K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
1 tháng 2 2020

Gọi Q là trung điểm của AD. Lúc đó thì MNPQ là hình bình hành (dễ c/m)

MP là đường chéo của hình bình hành MNPQ nên \(S_{\Delta MNP}=\frac{1}{2}S_{MNPQ}\)(1)

Gọi E, F là giao điểm của AC với NP và MQ. Kẻ BH \(\perp\) AC, MI \(\perp\) AC .

Lúc đó: \(S_{MNEF}=MI.MN\)

\(=\frac{1}{2}BH.\frac{1}{2}AC\)(tính chất đường trung bình của tam giác)

\(=\frac{1}{2}\left(\frac{1}{2}.BH.AC\right)=\frac{1}{2}S_{\Delta ABC}\)

Chứng minh tương tự, ta được:

\(S_{QPEF}=\frac{1}{2}S_{\Delta ADC}\)

Từ đó suy ra \(S_{MNPQ}=\frac{1}{2}S_{ABCD}\)(2)

Từ (1) và (2) suy ra \(S_{\Delta MNP}=\frac{1}{4}S_{ABCD}\)(đpcm)

4 tháng 4 2018

a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)

mà có EG=HF=> EFGH là hình thoi (*)

ta có BD//HE=> góc HEF vuông (**)

từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )

4 tháng 4 2018

A B C D E F G H M

a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)

\(\Rightarrow EH=EF=FG=HG\)

=>EFGH là hình thoi

\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)

\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)

=>\(\widehat{HEF}=90^0\)

=> EFGH  là hình vuông

b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)

\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)

\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)

\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)

\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)

gọi N là giao điểm của AG và DF 

cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF

=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM

\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A

c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)

\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)

Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)

Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)

Trong tam giác DCF theo định lý py ta go có:

\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)

 Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)