Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M G E F I
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
c) Gọi O là giao điểm của BE và AF
Xét tam giác AHC có: M là TĐ của HC(gt) , E là TĐ của AC (gt)
\(\Rightarrow ME\)là đường trung bình của tam giác AHC
\(\Rightarrow ME//AH\left(tc\right)\)
Mà \(AH\perp BC\)
\(\Rightarrow ME\perp BC\)
\(\Rightarrow\widehat{BME}=90^0\)
Vì ABFE là hcn (cmt)
\(\Rightarrow BE\)cắt AF tại TĐ mỗi đường (tc) mà O là giao điểm của BE và AF(c.vẽ)
\(\Rightarrow O\)là TĐ của BE và AF
Xét tam giác \(BME\)vuông tại M có đường trung tuyến OM ứng với cạnh huyền BE
\(\Rightarrow OM=\frac{1}{2}BE\left(tc\right)\)
Mà \(BE=AF\)(tc hcn)
\(\Rightarrow OM=\frac{1}{2}AF\)
Xét tam giác AMF có trung tuyến OM ứng với cạnh AF và \(OM=\frac{1}{2}AF\left(cmt\right)\)
\(\Rightarrow\Delta AMF\)vuông tại M
\(\Rightarrow\widehat{FMA}=90^0\)
\(\Rightarrow AM\perp FM\)