K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

12 tháng 1 2020

c) Gọi O là giao điểm của BE và AF 

Xét tam giác AHC có: M là TĐ của HC(gt) , E là TĐ của AC (gt)

\(\Rightarrow ME\)là đường trung bình của tam giác AHC

\(\Rightarrow ME//AH\left(tc\right)\)

Mà \(AH\perp BC\)

\(\Rightarrow ME\perp BC\)

\(\Rightarrow\widehat{BME}=90^0\)

Vì ABFE là hcn (cmt)

\(\Rightarrow BE\)cắt AF tại TĐ mỗi đường (tc) mà O là giao điểm của BE và AF(c.vẽ)

\(\Rightarrow O\)là TĐ của BE và AF

Xét tam giác \(BME\)vuông tại M có đường trung tuyến OM ứng với cạnh huyền BE 

\(\Rightarrow OM=\frac{1}{2}BE\left(tc\right)\)

Mà \(BE=AF\)(tc hcn) 

\(\Rightarrow OM=\frac{1}{2}AF\)

Xét tam giác AMF có trung tuyến OM ứng với cạnh AF và \(OM=\frac{1}{2}AF\left(cmt\right)\)

\(\Rightarrow\Delta AMF\)vuông tại M

\(\Rightarrow\widehat{FMA}=90^0\)

\(\Rightarrow AM\perp FM\)