\(AB=\sqrt{3};BC=3;CD=2\sqrt{3};AD=3\sqrt{3}\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1)

a) Vì A: B:C:D = 1:2:3:4

=> A= B/2 = C/3=D/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A = 36 độ

B= 72 độ

C=108 độ

D= 144 độ

b) Ta có :

A + D = 36 + 144 = 180 độ(1)

B+C = 72 + 108 = 180 độ(2)

Từ (1) và (2) ta có:

=> AB //CD (dpcm)

c) Ta có :

CDE + ADC = 180 độ(kề bù) 

=> CDE = 180 - 144 = 36

Ta có :

BCD + DCE = 180 độ ( kề bù) 

=> DCE = 180 - 108 = 72 

Xét ∆CDE ta có :

CDE + DCE + DEC = 180 (  tổng 3 góc trong ∆)

=> DEC = 180 - 72 - 36 = 72 độ 

Bài 2) 

a) Ta có ABCD có : 

A + B + C + D = 360 độ

Mà C = 80 độ

D= 70 độ

=> A+ B = 360 - 80 - 70 = 210 độ

Ta có AI là pg  góc A 

BI là pg góc B 

=> DAI = BAI = A/2 

=> ABI = CBI = B/2

=> BAI + ABI = A + B /2 

=> BAI + ABI = 210/2 = 105

Xét ∆IAB ta có :

IAB + ABI + AIB = 180 độ

=> AIB = 180 - 105

=> AIB = 75 độ

=> 

13 tháng 9

Tứ giác \(A B C D\)\(\hat{A} - \hat{B} = 50^{\circ}\). Các tia phân giác của \(\hat{C} , \hat{D}\) cắt nhau tại \(I\). Tính \(\hat{A} , \hat{B}\).

  • Gọi \(\hat{A} = a , \textrm{ }\textrm{ } \hat{B} = b , \textrm{ }\textrm{ } \hat{C} = c , \textrm{ }\textrm{ } \hat{D} = d\).
  • Ta có: \(a - b = 50^{\circ}\).
  • Trong tứ giác: \(a + b + c + d = 360^{\circ}\).
  • \(I\) là giao điểm phân giác \(\hat{C} , \hat{D}\) nên:
    \(\hat{C I D} = \frac{1}{2} \left(\right. c + d \left.\right)\).
  • \(\hat{C I D} = 90^{\circ} \Rightarrow c + d = 180^{\circ}\).
  • Thay vào: \(a + b = 180^{\circ}\).
  • Giải hệ:

a+b=180∘
a−b=50∘​  
⇒a=115∘,b=65∘.\(\)

Đáp số: \(\hat{A} = 115^{\circ} , \textrm{ }\textrm{ } \hat{B} = 65^{\circ}\).
xin tick. cảm ơnnn