Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD có :
\(\widehat{A}+\widehat{C}=50+130=180^o\)
\(\widehat{B}+\widehat{D}=60+120=180^o\)
Vậy tứ giác ABCD là hình thang
tổng 4 góc của tứ giác = 3600
vậy ta có:
góc A + góc B + góc C + góc D = 3600
800 + 700 + 1100 + góc D = 3600
=> góc D = 3600 - ( 800 + 700 + 1100 ) = 1000
vậy góc D = 1000
Trong các số tự nhiên phạm vi từ 10 000 đến 100 000 có bao nhiêu số thỏa mãn điều kiện: các chữ số của nó theo thứ tự từ trái sang phải là dãy tăng..
Các ví dụ:
- Số 12348 thỏa mãn điều kiện trên vì 1 < 2 < 3 < 4 < 8;
- Số 22345 không thoả mãn vì chữ số thứ nhất (2) và chữ số thứ hai (2) bằng nhau
- Số 12354 không thỏa mãn vì dãy các chữ số 1 ; 2 ; 3 ; 5 ; 4 không phải là dãy tăng. (5 > 4)
Ta có:
Góc A + Góc B + góc C + góc D = 3600 (toonge 4 góc trong tứ giác)
Mà góc C = 800 và góc D = 700 nên góc A + góc B = 2100
Theo đề bài, thì AI và BI lần lượt là tia phân giác của góc A và góc B nên góc IAB + góc IBA = 2100 : 2 = 105 độ.
Xét tam giác IAB ta có: góc AIB = 180 độ - 105 độ = 75 độ.
Vậy góc AIB = 75 độ.
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (tổng 4 góc trong tứ giác)
Mà: \(\widehat{C}=80^o\text{ và }\widehat{D}=70^o\text{ nên }\widehat{A}+\widehat{B}=210^o\)
Theo đề bài, Thì AI và BI lần lượt là tia phân giác của \(\widehat{A}\) và \(\widehat{B}\) nên \(\widehat{IAB}+\widehat{IBA}=\frac{210^o}{2}=150^o\)
Xét \(\Delta IAB,\text{ ta có: }\widehat{AIB}=180^o-150^o=75^o\)
\(\Rightarrow\widehat{AIB}=75^o\)
1)
Do tổng 4 góc trong 1 tứ giác = 360 độ (tính chất)
=> M + N + P + Q = 360 độ
=> 120 + 3P= 360
=> 3P = 240 độ
=> góc P = 80 độ
2)
TTu áp dụng tổng 4 góc trong 1 tứ giác = 360 độ
=> D=360-40-60-120=140 độ
3)
=> góc trong tại đỉnh A = 180-30=150 độ
Góc trong tại đỉnh B = 180 - 70 = 110 độ
Góc trong tại đỉnh C= 180 - 100=80 độ
=> Góc trong D = 360-150-110-80=20 độ
4)
Do góc A=100 độ; góc B=120 độ
=> góc C + góc D = 360-100-120=140 độ
Mà góc C + góc D =20 độ
=> 2.góc C=160 độ
=> Góc C=80 độ
=> Góc D=80-20=60 độ.
a: Gọi giao điểm của hai tia phân giác của hai góc BAD;ADC là M
Theo đề, ta có: MA\(\perp\)MD
=>ΔMAD vuông tại M
ΔMAD vuông tại M
=>\(\widehat{MAD}+\widehat{MDA}=90^0\)
=>\(\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ADC}\right)=90^0\)
=>\(\widehat{BAD}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
=>ABCD là hình thang
b: Sửa đề: Hai tia phân giác của góc C và góc B cũng vuông góc với nhau
Gọi N là giao điểm của hai tia phân giác của hai góc ABC và góc BCD
AB//CD
=>\(\widehat{ABC}+\widehat{BCD}=180^0\)(hai góc trong cùng phía)
=>\(2\cdot\left(\widehat{NBC}+\widehat{NCB}\right)=180^0\)
=>\(\widehat{NBC}+\widehat{NCB}=90^0\)
=>ΔNBC vuông tại N
=>NB vuông góc NC(ĐPCM)
Nối a với c chia tứ giác thành 2 tam giác, tổng góc của 2 tam giác là 360o
⇒ các góc của 2 tam giác cộng lại với nhau bằng 360o
⇒ ^a+^b+^c+^d=360o