K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Gọi giao điểm các đường phân giác trong tứ giác ABCD lần lượt là M, N, P, Q như hình vẽ bên trên.

Xét tam giác APB có: \(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=\frac{360^o-\widehat{DAB}-\widehat{CBA}}{2}\)

Tương tự xét tam giác MCD ta cũng có:

\(\widehat{DMC}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}\)

Suy ra \(\widehat{QMN}+\widehat{QPN}=\frac{360^o-\widehat{ADC}-\widehat{BCD}}{2}+\frac{360^o-\widehat{DAB}-\widehat{ABC}}{2}\)

\(=\frac{720^o-360^o}{2}=180^o\)

Do tổng 4 góc trong một tứ giác bằng 360o nên ta cũng có \(\widehat{MQP}+\widehat{MNP}=360^o-180^o=180^o\)

Vậy tứ giác MNPQ có các góc đối bù nhau.

23 tháng 8 2019

A D B C E F H G

Ta có : góc F =\(180^o-\frac{\widehat{A}+\widehat{B}}{2}\)

Góc G =  \(180^o-\frac{\widehat{B}+\widehat{C}}{2}\)( LIÊN HỆ GIỮA BA GÓC TRONG TAM GIÁC )

Cộng từng vế hai đẳng thức trên ta được :

\(\widehat{F}+\widehat{G}=360^o-\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=360^o-\frac{1}{2}.360^o\)

nên góc F + góc G =\(180^o\)

Lại có :

\(\widehat{E}+\widehat{F}+\widehat{H}+\widehat{G}=360^o\)

hay góc E + góc H + \(180^o\)\(360^o\)

nên góc E + góc H = \(180^o\)

Vậy tứ giác EFHG là tứ giác có tổng hai góc đối bù nhau . 

Chúc bạn học tốt !!!

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath

21 tháng 8 2016

A B C D M N P Q 1 1 1 1

Có: góc a1+b1= 180-apb

      góc c1+d1= 180-cmd

từ 2 cái suy ra a1+b1+c1+d1=360-tổng 2 góc đối(gọi tắt là T2GD nha)

suy ra 360-360/2=T2GD (vì a1=1 nửa góc a, tương tự các cái kia suy ra tổng abcd1 bằng 360/2, tổng các góc trong tg=360)

suy ra 2 góc đối bù nhau

cmtt suy ra 2 góc đối kia cũng bù nhau

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath

25 tháng 7 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath