Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
a → , b → , c → đồng phẳng khi a → ; b → c → = 0 ⇔ x = 2
Giả sử C(c,3-c). Gọi I là giao điểm của AC và MN, suy ra \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AC}=\left(\dfrac{2(c+2)}{3};\dfrac{2(3-c)}{3}\right)\)
Do đó \(I\left(\dfrac{2c-2}{3};\dfrac{6-2c}{3}\right)\in MN:7x-6y-5=0\Rightarrow c=\dfrac{5}{2}\). Vậy \(C\left(\dfrac{5}{2};\dfrac{1}{2}\right)\)
Trung điểm của AC là \(P\left(\dfrac{1}{4};\dfrac{1}{4}\right),\overrightarrow{AC}\left(\dfrac{7}{2};\dfrac{1}{2}\right)\Rightarrow B\left(\dfrac{1}{4}+t;\dfrac{1}{4}-7t\right), D\left(\dfrac{1}{4}-t;\dfrac{1}{4}+7t\right)\).
Vì \(BP=CP=\dfrac{AC}{2}=\dfrac{5\sqrt{2}}{2}\)nên \(t=\pm\dfrac{1}{2}\)
Vậy \(B\left(\dfrac{3}{4};-\dfrac{13}{4}\right),D\left(-\dfrac{1}{4};\dfrac{15}{4}\right)\)hoặc \(B\left(-\dfrac{1}{4};\dfrac{15}{4}\right),D\left(\dfrac{3}{4};-\dfrac{13}{4}\right)\).
Đáp án C
A M → = 2 A B → − 3 A C → D N → = D B → + x D C → = A B → − A D → + x A C → − A D → = A B → + x A C → − ( x + 1 ) A D → M N → = A N → − A M → = A D → + D N → − A M → = − A B → + ( x + 3 ) A C → − x A D → B C → = A C → − A B →
Để 3 vectơ A D → , B C → , M N → đồng phẳng ⇔ ∃ m , n ∈ R sao cho :
A M → = 2 A B → − 3 A C → D N → = D B → + x D C → = A B → − A D → + x A C → − A D → = A B → + x A C → − ( x + 1 ) A D → M N → = A N → − A M → = A D → + D N → − A M → = − A B → + ( x + 3 ) A C → − x A D → B C → = A C → − A B → M N → = m . A D → + n B C → ⇔ − A B → + ( x + 3 ) A C → − x A D → = m A D → + n ( A C → − A B → ) ⇔ n − 1 = 0 x + 3 − n = 0 x + m = 0 ⇔ n = 1 x = − 2 m = 2