Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+) Tam giác ABC có MN là đường trung bình nên MN // AB (1).
- Tam giác ABD có PQ là đường trung bình nên PQ // AB (2)
- Từ (1) và (2) suy ra: MN // PQ.
+) Chứng minh tương tự, ta có: MQ// NP (vì cùng // CD)
- Do đó, tứ giác MNPQ là hình bình hành.
+) Để tứ giác MNPQ là hình thoi khi MQ = PQ.
Ta có N là trung điểm của BC
Suy ra A B → + A C → = 2 A N →
Lại có: A D → = 2 A Q → (Q là trung điểm của AD)
Do đó A B → + A C → + A D → = 2 A N → + 2 A Q → = 2 A N → + A Q → (1)
Tạ lại có G là trọng tâm của tứ diện ABCD nên G là trung điểm của NQ (tính chất trọng tâm của tứ diện) ⇒ A N → + A Q → = 2 A G → (2)
Từ (1) và (2) suy ra A B → + A C → + A D → = 4 A G → .
Đáp án A
Trong tam giác ABC ta có:
MP // AC và MP = AC/2.
Trong tam giác ACD ta có:
QN // AC và QN = AC/2.
Từ đó suy ra {MP // QN}
⇒ Tứ giác MNPQ là hình bình hành.
Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.
Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.
Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS
Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Đáp án D
+ Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD
Suy ra SN là đường trung bình của tam giác CAD
SN // AD (1)
Tương tự MR cũng là đường trung bình của tam giác ABD
MR // AD (2)
Từ (1) và (2) suy ra: SN // MR nên đáp án A đúng
Chứng minh tương tự ta cũng có: SM // NR (//BC)
Do đó tứ giác MRNS là hình bình hành nên đáp án C đúng.
Suy ra hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.
Lại có: NQ // MP (//AC) và MQ // NP (//BD)
Suy ra tứ giác MQNP là hình bình hành
Suy ra hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường
Mà G là trung điểm của MN
Do đó G cũng là trung điểm của QP
Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.
Đáp án B đúng
Đáp án D sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.
Chọn đáp án D
a)
⇒ (α) ∩ (ABC) = MN và MN // AB
Ta có N ∈ (BCD) và
Nên ⇒ (α) ∩ (BCD) = NP và NP // CD
Ta có P ∈ (ABD)
Và nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB
nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD
Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.
b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.
Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.
Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.
Vì MNPQ là hình bình hành nên ta có
EF // MN ⇒ EF // AB
Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J
⇒ I, O, J thẳng hàng
⇒ O ∈ IJ cố định.
Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .
Vậy tập hợp các điểm O là đoạn IJ.
a) \(\widehat {ABC} = {90^ \circ } \Rightarrow AB \bot BC \Rightarrow d\left( {C,AB} \right) = BC = b\).
b)
\(\begin{array}{l}\left. \begin{array}{l}\widehat {ABC} = {90^ \circ } \Rightarrow AB \bot BC\\\widehat {ABD} = {90^ \circ } \Rightarrow AB \bot BD\end{array} \right\} \Rightarrow AB \bot \left( {BC{\rm{D}}} \right)\\\left. \begin{array}{l} \Rightarrow AB \bot C{\rm{D}}\\\widehat {BC{\rm{D}}} = {90^ \circ } \Rightarrow BC \bot C{\rm{D}}\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {ABC} \right)\\ \Rightarrow d\left( {D,\left( {ABC} \right)} \right) = C{\rm{D}} = \sqrt {B{{\rm{D}}^2} - B{C^2}} = \sqrt {{c^2} - {b^2}} \end{array}\)
c) \(AB \bot BC,C{\rm{D}} \bot BC \Rightarrow d\left( {AB,C{\rm{D}}} \right) = BC = b\).
MNQP là hình thoi khi và chỉ khi \(PQ=QM\)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow AB=CD\)