K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
15 tháng 9 2017
Trong tam giác ABC ta có:
MP // AC và MP = AC/2.
Trong tam giác ACD ta có:
QN // AC và QN = AC/2.
Từ đó suy ra {MP // QN}
⇒ Tứ giác MNPQ là hình bình hành.
Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.
Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.
Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS
Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
CM
2 tháng 2 2017
a) Ta có:
PQ = (ABC) ∩ (PQRS)
RS = (PQRS) ∩ (ACD)
AC = (ABC) ∩ (ACD)
Vậy hoặc PQ, RS, AC đồng qui hoặc song song.
b) PS =(ABD) ∩ (PQRS)
RQ = (BCD) ∩ (PQRS)
BD = (ABD) ∩ (CBD)
Vậy PS, RQ, BD đồng quy hoặc song song.
Đáp án D
+ Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD
Suy ra SN là đường trung bình của tam giác CAD
SN // AD (1)
Tương tự MR cũng là đường trung bình của tam giác ABD
MR // AD (2)
Từ (1) và (2) suy ra: SN // MR nên đáp án A đúng
Chứng minh tương tự ta cũng có: SM // NR (//BC)
Do đó tứ giác MRNS là hình bình hành nên đáp án C đúng.
Suy ra hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.
Lại có: NQ // MP (//AC) và MQ // NP (//BD)
Suy ra tứ giác MQNP là hình bình hành
Suy ra hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường
Mà G là trung điểm của MN
Do đó G cũng là trung điểm của QP
Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.
Đáp án B đúng
Đáp án D sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.
Chọn đáp án D