K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2020

1/ \(\overrightarrow{AB}^2-\overrightarrow{AD}^2=\overrightarrow{BC}^2-\overrightarrow{CD}^2\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)=\left(\overrightarrow{BC}+\overrightarrow{CD}\right)\left(\overrightarrow{BC}-\overrightarrow{CD}\right)\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right).\overrightarrow{DB}=\overrightarrow{BD}\left(\overrightarrow{BC}-\overrightarrow{CD}\right)=\overrightarrow{DB}\left(\overrightarrow{CB}+\overrightarrow{CD}\right)\)

Gọi M là trung điểm BD

\(\Rightarrow2\overrightarrow{AM}.\overrightarrow{DB}=2\overrightarrow{CM}.\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{DB}.\left(\overrightarrow{AM}-\overrightarrow{CM}\right)=0\)

\(\Leftrightarrow\overrightarrow{BD}.\overrightarrow{AC}=0\)

NV
8 tháng 2 2020

2/ \(A=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Rightarrow A^2=\overrightarrow{a}^2-2\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}^2\)

\(=a^2+b^2-2ab.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=4^2+5^2-2.4.5.cos120^0=61\)

\(\Rightarrow A=\sqrt{61}\)

b/ \(B=\left|2\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow B^2=4a^2+b^2+4\overrightarrow{a}.\overrightarrow{b}\)

\(=4a^2+b^2+4ab.cos120^0=49\)

\(\Rightarrow B=7\)

3/ \(\left|\overrightarrow{x}\right|=\left|\overrightarrow{a}-2\overrightarrow{b}\right|\Rightarrow\left|\overrightarrow{x}\right|^2=a^2+4b^2-4\overrightarrow{a}.\overrightarrow{b}=12\)

\(\Rightarrow\left|\overrightarrow{x}\right|=2\sqrt{3}\)

\(\left|\overrightarrow{y}\right|^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=5\Rightarrow\left|\overrightarrow{y}\right|=\sqrt{5}\)

\(\overrightarrow{x}.\overrightarrow{y}=\left(\overrightarrow{a}-2\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2+2b^2-3\overrightarrow{a}.\overrightarrow{b}=4\)

\(\Rightarrow cos\alpha=\frac{\overrightarrow{x}.\overrightarrow{y}}{\left|\overrightarrow{x}\right|.\left|\overrightarrow{y}\right|}=\frac{4}{2\sqrt{15}}=\frac{2\sqrt{15}}{15}\)

6 tháng 2 2021

Tao có: \(\overrightarrow{BC}.\overrightarrow{AD}=\overrightarrow{BC}\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{CB}.\overrightarrow{CD}-\overrightarrow{CB}.\overrightarrow{CA}\)

\(=\frac{1}{2}\left(CB^2+CD^2-BD^2\right)-\frac{1}{2}\left(CB^2+CA^2-AB^2\right)\)

\(=\frac{1}{2}\left(AB^2+CD^2-BD^2-CA^2\right)\)

\(\Rightarrow\cos\left(\overrightarrow{BC},\overrightarrow{DA}\right)=\frac{1}{2}.\frac{c^2+c'^2-b^2-b'^2}{2aa'}\)

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\) 2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu? 3. Cho 3 đường thẳng...
Đọc tiếp

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)

2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?

3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'

4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m

4
NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a. 1) CMR: DCB'A' và BCD'A' là những hình vuông. 2) CMR: AC' vuông góc với DA' AC' vuông góc với BA' 3) Tính độ dài đoạn AC' Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC'...
Đọc tiếp

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a.

1) CMR: DCB'A' và BCD'A' là những hình vuông.

2) CMR: AC' vuông góc với DA' AC' vuông góc với BA'

3) Tính độ dài đoạn AC'

Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho \(\overrightarrow{MA}=k\overrightarrow{MC'}\) , \(\overrightarrow{NB'}=k\overrightarrow{NC}\) . Biểu diễn các vectơ sau theo ba vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) (nhớ vẽ hình)

Bài 3: Cho tứ diện ABCD có tất cả các cạnh bằng a. Các điểm M, N lần lượt là trung điểm AB, CD. O là tâm đường tròn ngoại tiếp tam giác BCD.

1) CMR: AO vuông góc với CD; MN vuông góc với CD.

2) Tính góc giữa: AC và BN; MN và BC. (nhớ vẽ hình.)

0
26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

5 tháng 8 2018

Ta có:  M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC
suy ra: MN// AC  và
  M N =    1 2 A C    (1)

Tương tự:  QP là đường trung  bình của tam giác ACD nên QP // AC và Q P =    1 2 A C  (2)

Từ  (1) và (2) suy ra: tứ giác  MNPQ là hình bình hành (có các cạnh đối song song và bằng nhau)

Đáp án C