K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Tham khảo:

a) Ta có: M là trọng tâm của tam giác BCD

Nên M nằm trên trung tuyến BI (1)

Ta có: N là trọng tâm của tam giác ACD

Nên N nằm trên trung tuyến AI (2)

Từ (1) và (2) suy ra M và N thuộc mp (ABI)

b) Gọi H, K lần lượt là trung điểm của AG, BG

Ta có: HK // AB

          AB // MN

Suy ra MN // HK

Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)

Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)

Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)

Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)

c) Gọi H, K lần lượt là trung điểm của BC, BD

Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Suy ra: QM // AD

Do đó, tam giác QGM đồng dạng với tam giác DGA

Nên D, G, Q thẳng hàng

Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)

Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)

Suy ra điều cần chứng minh.

24 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(Vì G là trọng tâm của tam giác ABCD nên Giải sách bài tập Toán 11 | Giải sbt Toán 11)

19 tháng 1 2019

Đáp án C.

+ Gọi  G 0  là trọng tâm tam giác BCD=> G B ⇀   +   G C ⇀   +   G D ⇀   =   3 G G 0 ⇀

=> G A ⇀   +   G B ⇀   +   G C ⇀   +   G D ⇀   =   0 ⇀

=> A, G,  G 0 thẳng hàng  ⇒ G 0   =   G A

+ Có A, G,  G A thẳng hàng mà 

31 tháng 5 2017

Giải bài tập Đại số 11 | Để học tốt Toán 11

Gọi N là trung điểm CD.

+ GA là trọng tâm ΔBCD

⇒ GA ∈ trung tuyến BN ⊂ (ANB)

⇒ AGA ⊂ (ANB)

GB là trọng tâm ΔACD

⇒ GB ∈ trung tuyến AN ⊂ (ANB)

⇒ BGB ⊂ (ANB).

Trong (ANB): AGA không song song với BGB

⇒ AGA cắt BGB tại O

+ Chứng minh tương tự: BGB cắt CGC; CGC cắt AGA.

+ CGC không nằm trong (ANB) ⇒ AGA; BGB; CGC không đồng phẳng(áp dụng kết quả bài 3).

⇒ AGA; BGB; CGC đồng quy tại O

+ Chứng minh hoàn toàn tương tự: AGA; BGB; DGD đồng quy tại O

 

Vậy AGA; BGB ; CGC; DGD đồng quy tại O (đpcm).

6 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

20 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I là trung điểm của CD.

Vì G 1  là trọng tâm của tam giác ACD nên G 1   ∈   A I

Vì G 2  là trọng tâm của tam giác BCD nên G 2   ∈   B I

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

A B   ⊂   ( A B C )   ⇒   G 1 G 2   / /   ( A B C )

Và A B   ⊂   ( A B D )   ⇒   G 1 G 2   / /   ( A B D )