K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 7 2019
Đặt tên cho n điểm ấy là A1;A2;...;An
Xét điểm A1, ta có thể vẽ đường thẳng đi qua A1 và một trong các điểm còn lại.
Do đó số đường thẳng đi qua A1 là n đường
Lập luận tương tự với các điểm còn lại, ta được tổng số đường thẳng đi qua n điểm ấy là
n.n=n2 đường
Nhưng cần lưu ý rằng do mỗi trường hợp ta xét luôn xảy ra trường hợp có 1 đường thẳng trùng với trường hợp trước đó
Do vậy ta phải bớt đi:
1+2+...+n=\(\frac{n\left(n+1\right)}{2}\)
Tóm lại số đường thẳng ta có thể vẽ là n2-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{2n^2-n^2-n}{2}\)=\(\frac{n^2-n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)
a) Với 4 điểm A, B, C, D cho trước trong đó không có ba điểm bất kì nào thẳng hàng thì có thể vẽ được 6 đường thẳng là: AB , AC , AD , BC , BD , CD .
b) Với 5 điểm A, B, C, D, E cho trước trong đó không có ba điểm bất kì nào thẳng hàng thì có thể vẽ được 10 đường thẳng là: AB , AC , AD , AE , BC , BD , BE , CD , CE , DE .
c) Chọn một trong số n điểm đã cho rồi nối điểm đó với n-1 điểm còn lại ta được n-1 đường thẳng.
Làm như vậy với tất cả n điểm ta được n(n-1) đường thẳng. Nhưng mỗi đường thẳng được tính hai lần, do đó ta vẽ được n . n − 1 2 đường thẳng.