K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Giải :

\(S_{ABD}+S_{ACD}=S_{ABC}\).

\(\frac{1}{2}AB\cdot AD\cdot\sin\frac{A}{2}+\frac{1}{2}AD\cdot AC\cdot\sin\frac{A}{2}=\frac{1}{2}AB\cdot AC\cdot\sin A\)

\(\Rightarrow\frac{1}{2}AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=\frac{1}{2}AB\cdot AC\cdot2\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}\)

\(\Rightarrow\frac{2\cdot AB\cdot AC\cdot\cos\frac{A}{2}}{AB+AC}\) (đpcm).

1 tháng 2 2020

1. Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{x}{17}\)

Từ bài ra => \(\frac{x}{17}=\frac{xy}{17}\)

<=> \(x=xy\)

<=> xy - x = 0

<=> x ( y-1) =0

<=> x = 0 hoặc y = 1

+) Với x = 0 , ta có: \(\frac{y}{16}=\frac{0}{17}=-\frac{y}{18}\)=> y = 0

+) Với  y = 1; ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{x-1}{18}\)

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{1}{-1}=-1\Rightarrow x=-17\) thử lại thỏa mãn

Vậy x = 0; y= 0 hoặc x = -17 ; y = 1

1 tháng 2 2020

Cô ơi 2 dòng dấu cộng em chưa hiểu ạ

8 tháng 1 2016

Giá Trị nhỏ nhất của A = 5 

Tick nha NGUYỄN PHƯƠNG LINH .  Thank 

8 tháng 1 2016

-11 khi x = \(\frac{-3}{10}\)

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))

20 tháng 10 2023

a: \(2\left|3-2x\right|+\dfrac{1}{2}=\dfrac{5}{2}\)

=>\(2\left|2x-3\right|=2\)

=>|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

b: \(x^2\left(2^x-6\right)-2x^3=0\)

=>\(x^2\left(2^x-6-2x\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2^x-6-2x=0\end{matrix}\right.\Leftrightarrow x=0\)