Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{x}{17}\)
Từ bài ra => \(\frac{x}{17}=\frac{xy}{17}\)
<=> \(x=xy\)
<=> xy - x = 0
<=> x ( y-1) =0
<=> x = 0 hoặc y = 1
+) Với x = 0 , ta có: \(\frac{y}{16}=\frac{0}{17}=-\frac{y}{18}\)=> y = 0
+) Với y = 1; ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{x-1}{18}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{1}{-1}=-1\Rightarrow x=-17\) thử lại thỏa mãn
Vậy x = 0; y= 0 hoặc x = -17 ; y = 1
Bài 1) .
Ta có : AB =AC ( gt)
=> ∆ABC cân tại A
=> B = C
Xét ∆ ABE và ∆ ACD ta có
AD = DE ( gt)
AB = AC ( gt)
B = C ( cmt)
=> ∆ABE = ∆ACD ( c.g.c)
=> EAB = DAC (dpcm)
b) Vì M là trung điểm BC
=> BM = MC
Mà ∆ABC cân tại A ( cmt)
=> AM là trung tuyến ∆ABC
=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC
Mà D,E thuộc BC
AM vuông góc với DE
Mà ∆ADE cân tại A ( AD = AE )
=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE
=> AM là phân giác DAE
c) Vì AM là phân giác DAE
=> DAM = EAM = 60/2 = 30 độ
= > Mà AM vuông góc với DE (cmt)
=> AME = AMD = 90 độ
=> AME + MAE + AEM = 180 độ
=> AEM = 180 - 90 - 30 = 60 độ
Mà ∆ADE cân tại A
=> ADE = AED = 60 độ
Bài 2)
Trong ∆ABC có A = 90 độ
=> BAC = 90 độ :))))))
a: \(2\left|3-2x\right|+\dfrac{1}{2}=\dfrac{5}{2}\)
=>\(2\left|2x-3\right|=2\)
=>|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b: \(x^2\left(2^x-6\right)-2x^3=0\)
=>\(x^2\left(2^x-6-2x\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2^x-6-2x=0\end{matrix}\right.\Leftrightarrow x=0\)
Giải :
\(S_{ABD}+S_{ACD}=S_{ABC}\).
\(\frac{1}{2}AB\cdot AD\cdot\sin\frac{A}{2}+\frac{1}{2}AD\cdot AC\cdot\sin\frac{A}{2}=\frac{1}{2}AB\cdot AC\cdot\sin A\)
\(\Rightarrow\frac{1}{2}AD\cdot\sin\frac{A}{2}\left(AB+AC\right)=\frac{1}{2}AB\cdot AC\cdot2\cdot\sin\frac{A}{2}\cdot\cos\frac{A}{2}\)
\(\Rightarrow\frac{2\cdot AB\cdot AC\cdot\cos\frac{A}{2}}{AB+AC}\) (đpcm).