K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(=\frac{1}{10}+\frac{90}{100}>1\)

\(A>1\left(đpcm\right)\)

9 tháng 10 2017

a>1(đpcm)

5 tháng 4 2017

Tử số sau 1/9 là 2/10.Tối nay mình thử làm xem

3 tháng 7 2017

Quên mất, bảo tối hôm đó vào làm  :)). May là sang nay có ng k ms vào xem. Sorry

S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)

=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)

Vậy S=40

21 tháng 7 2017

trời ??? này mà là toán lớp 5 what???

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{101}}\)

\(2A-A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{2^{101}}-\frac{1}{2}\)

\(\Rightarrow A>0\) ( đpcm )

Bài này phải làm như thế này nha lần trước tui làm nhầm sorry

Study well 

7 tháng 8 2019

uk cám ơn bn nhiều

29 tháng 6 2017

\(\frac{3967}{3465}\) đúng thi tk

29 tháng 6 2017

3967/3465

    ( k đúng cho mk nha )

9 tháng 3 2019

Thấy 1/41+1/42 +......+ 1/60 < 1/40 .20

     1/41 +1/42 + .....+1/60<1/2

mà 1/61 +1/62+......+1/80 < 1/60 .20 =1/3

suy ra 1/41+1/42+ .......+1/80 <1/2 +1/3=7/12(đpcm)

Lại có 1/41 +1/42 +.....+1/80 <1/40 .40 =1(đpcm)

18 tháng 5 2018

A=1.078688093

13 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)

\(3A=1-\frac{1}{64}\)

\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)

11 tháng 8 2017

Bài 1:

Ta thấy:

\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)

11 tháng 8 2017

Bài 2:

Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)

Theo quy luật như vậy ta có các số tiếp theo là:

\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)

Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)

\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)

\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)

\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)

\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)

\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)