K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

A=1-2+3-4+...+2017-2018

=(-1)+(-1)+...+(-1)

=(-1)*1009

=-1009

k mik nha

30 tháng 4 2017

a) - 10 b) - 1009

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

3 tháng 1 2020

Ta có\(S_1=1-2+3-4+...+2017-2018\)

Vì S1 có 2018 hạng tử nên ta ghép 2 số liên tiếp với nhau.

Khi đó, ta đc: S1=(-1)*1009

<=> S1=-1009

Vậy....

3 tháng 1 2020

s1=[1+(-2)]+[3+(-4)+...+[2017+(-2018)

s1= (-1) . (2018 - 2)/2+1

s1= -1 . 1009

= - 1009

25 tháng 10 2019

Đáp án là D

Ta có:

S = 1 - 2 + 3 - 4 + ... + 2017 - 2018

S = (1 - 2) + (3 - 4) + ... + (2017 - 2018)

S = (-1) + (-1) + ... + (-1)

S = 1009.(-1) = -1009

3 tháng 7 2017

thằng Lê Mạnh Tiến Đạt chuẩn bị trả lời nè 

3 tháng 7 2017

a, \(S_1=3+4+6+8+...+2016+2017\)

\(S_1=3+\left(4+6+8+...+2016\right)+2017\)

Số số hạng của (4 + 6 + 8 + ... + 2016) là: 

\(\left(2016-4\right)\div2+1=1007\)

Tổng của (4 + 6 + 8+ ... + 2016) là: 

\(\frac{\left(4+2016\right).1007}{2}=1017070\)

\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)

b, \(S_2=2+3+5+7+...+2017+2018\)

\(S_2=2+\left(3+5+7+...+2017\right)+2018\)

Số số hạng của (3 + 5 + 7 + ... + 2017) là: 

\(\frac{2017-3}{2}+1=1008\)

Tổng của (3 + 5 + 7 + ... + 2017) là: 

\(\frac{\left(3+2017\right).1008}{2}=1018080\)

\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)

14 tháng 5 2018

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)

\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)

=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)

14 tháng 7 2021

9219321938921839289382983928392839238929832