Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
các câu còn lại bạn tự làm đi! HI.......
https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0
Xem ở lick này nhé (mình gửi cho)
Học tốt!!!!!!!!!!!!!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a = bk,c = dk
Do đó \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)
Từ (1) và (2) => \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) Vì \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(k\ne0\right)\)\(\Rightarrow a=ck\); \(b=dk\)
Ta có: \(\frac{2a+3b}{2a-3b}=\frac{2.ck+3.dk}{2.ck-3.dk}=\frac{k\left(2c+3d\right)}{k\left(2c-3d\right)}=\frac{2c+3d}{2c-3d}\)( đpcm )
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)( đpcm )
Sửa lại đề: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Từ \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)
\(\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\)
\(\Leftrightarrow ca+bc=ac+a^2\)
\(\Leftrightarrow a^2=bc\)( đpcm )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)
\(\frac{ac}{bd}=\frac{kb\cdot kd}{bd}=\frac{k^2bd}{bd}=k^2\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{a+3c}{b+3d}=\frac{kb+3\cdot kd}{b+3d}=\frac{kb+3kd}{b+3d}=\frac{k\left(b+3d\right)}{b+3d}=k\)(1)
\(\frac{a-3c}{b-3d}=\frac{kb-3\cdot kd}{b-3d}=\frac{kb-3kd}{b-3d}=\frac{k\left(b-3d\right)}{b-3d}=k\)(2)
Từ (1) và (2) => đpcm