\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)

\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)

28 tháng 10 2019

Bạn ơi tham khảo thử cách này nhé !

Từ  \(\frac{a}{b}=\frac{c}{d}\)( bài cho )

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó :

+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)

+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)

31 tháng 10 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019b^2k^2+2020b^2}{2019b^2k^2-2020b^2}\)

\(=\frac{2019k^2+2020}{2019k^2-2020}\)(1)

\(\Rightarrow\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019d^2k^2+2020d^2}{2019d^2k^2-2020d^2}\)

\(=\frac{2019k^2+2020}{2019k^2-2020}\)(2)

Từ (1) và (2) suy ra \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}\)\(=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\left(đpcm\right)\)

10 tháng 12 2021

Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)

10 tháng 12 2021

\(\dfrac{2018a-2019b}{2019c-2020d}=\dfrac{2018c-2018c}{2019a+2020b}\)

Sao .... ;-; ;-; 

2 tháng 11 2019

a) Áp dụng dãy tỉ số bằng nhau:

 \(\frac{a}{c}=\frac{b}{d}=\frac{2020b}{2020d}=\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)

=> \(\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)

=> \(\frac{a+2020b}{a-2020b}=\frac{c+2020d}{c-2020d}\)

b) \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{a}{a+c}=\frac{b}{b+d}\)

=> \(\frac{2020a}{2020\left(a+c\right)}=\frac{b}{b+d}\)

=> \(\frac{2020\left(a+c\right)}{2020a}=\frac{b+d}{b}\)

c) \(2a+3c\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)

Câu c sai đề.

Ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\Rightarrow\left\{{}\begin{matrix}a=3k\\b=5k\\c=7k\end{matrix}\right.\)

\(\Rightarrow\frac{2019b-2020a}{2019c-2020b}=\frac{2019.5k-2020.3k}{2019.7k-2020.5k}=\frac{4035k}{4033k}=\frac{4035}{4033}>\frac{4033}{4033}=1\)

Vậy \(\frac{2019b-2020a}{2019c-2020b}>1\left(đpcm\right)\)

15 tháng 2 2020

Cảm ơn bạn nhiều lắm ! Bạn giỏi thật ! Mình cảm ơnha

Có:

\(ac=b^2\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{2019a+2020b}{2019b+2020c}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{2019a+2020b}{2019b+2020c}.\frac{2019a+2020b}{2019b+2020c}\)

\(\Rightarrow\frac{a}{c}=\frac{\left(2019a+2020b\right)^2}{\left(2019b+2020c\right)^2}\left(đpcm\right)\)

Chúc bạn học giỏi

26 tháng 12 2019

các bạn ơi giúp mình với nhanh lên nha!!!

batngo