\(\frac{2019a+2020c}{2019a-2021c}=\frac{2019b+2020d}{2019b-2021d}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2020

Từ \(\frac{2019a+2020c}{2019a-2021c}=\frac{2019b+2020d}{2019b-2021d}\)

=> \(\frac{2019a-2021c+4041c}{2019a-2021c}=\frac{2019b-2021d+4041d}{2019b-2021d}\)

=> \(1+\frac{4041c}{2019a-2021c}=1+\frac{4041d}{2019b-2021d}\)

=> \(\frac{4041c}{2019a-2021c}=\frac{4041d}{2019b-2021d}\)

=> \(4041c\left(2019b-2021d\right)=4041d\left(2019a-2021c\right)\)

=> \(c\left(2019b-2021d\right)=d\left(2019a-2021c\right)\)( rút 4041 ở cả hai vế )

=> \(2019bc-2021cd=2019ad-2021cd\)

=> \(2019ad-2021cd-2019bc+2021cd=0\)

=> \(2019\left(ad-bc\right)=0\)

=> \(ad-bc=0\)

=> \(ad=bc\)

=> \(\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

+) \(\left(\frac{a+b}{c+d}\right)^{2020}=\left(\frac{kb+b}{kd+d}\right)^{2020}=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2020}=\left(\frac{b}{d}\right)^{2020}=\frac{b^{2020}}{d^{2020}}\)(1)

+) \(\frac{a^{2020}+b^{2020}}{c^{2020}+d^{2020}}=\frac{\left(kb\right)^{2020}+b^{2020}}{\left(kd\right)^{2020}+d^{2020}}=\frac{k^{2020}b^{2020}+b^{2020}}{k^{2020}d^{2020}+d^{2020}}=\frac{b^{2020}\left(k^{2020}+1\right)}{d^{2020}\left(k^{2020}+1\right)}=\frac{b^{2020}}{d^{2020}}\)(2)

Từ (1) và (2) ta có điều phải chứng minh

28 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)

\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)

28 tháng 10 2019

Bạn ơi tham khảo thử cách này nhé !

Từ  \(\frac{a}{b}=\frac{c}{d}\)( bài cho )

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó :

+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)

+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

12 tháng 11 2019

Ko khó đâu bn ơi

Đặt a/b=c/d=k

=> a=bk và c=dk

Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)

= (k^2020-1)/(k^2020+1)

Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)

= (k^2020-1)/(k^2020+1)

=> đpcm.

10 tháng 10 2021

Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)

=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)

<=>  \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\) 

<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)  

11 tháng 3 2020

Bạn hãy dựa vào link này mà tự làm nhé : 

https://olm.vn/hoi-dap/detail/246211413079.html

Bài làm của mình đó !

7 tháng 7 2020

meo hieu haha