\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)

=> a=bk ,c=dk

a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)

b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

22 tháng 9 2017

Từ TLT: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{\left(a+c\right)}{\left(b+d\right)}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{ac}{bd}\left(dpcm\right)\)

23 tháng 11 2017

*a/b=c/d=k=>a=bk;c=dk

Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3

Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3

=>2a+3b/2a-3b=2c+3d/2c-3d

*a/b=c/d=>a/c=b/d=k

=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)

k^2=a/c.b/d=ab/cd (2)

Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2

*a/b=c/d=>a/c=b/d=k=a+b/c+d

=>k^2=(a+b/c+d)^2

k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2

=>(a+b/c+d)^2=a^2+b^2/c^2+d^2

28 tháng 3 2018

Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)

a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)

Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)

Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

4 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)

\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)

\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)

d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)

\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

4 tháng 11 2018

Hình như phải là cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứ

19 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét \(VT=\dfrac{a^2}{b^2}=\dfrac{\left(bk\right)^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\left(1\right)\)

Xét \(VP=\dfrac{a^2-ac}{b^2-bd}=\dfrac{\left(bk\right)^2-bk\cdot dk}{b^2-bd}=\dfrac{b^2k^2-bdk^2}{b^2-bd}\)

\(=\dfrac{k^2\left(b^2-bd\right)}{b^2-bd}=k^2\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM

28 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=t\) \(\Rightarrow a=bt\);\(c=dt\)

rồi bạn thế vào điều phải chứng minh là ra

29 tháng 10 2017

Bn lm chi tiết từng bài giúp mk đc k

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{3a^2+5ac}{3a^2-5ac}=\dfrac{3b^2k^2+5\cdot bk\cdot dk}{3b^2k^2-5\cdot bk\cdot dk}=\dfrac{3b^2k^2+5bdk^2}{3b^2k^2-5bdk^2}=\dfrac{3b^2+5bd}{3b^2-5bd}\)

16 tháng 7 2018

a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)

b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)

=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)

28 tháng 10 2017

a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)

\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1

=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)

=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)