\(\dfrac{ a+b}{b+c}=\dfrac{c+d}{d+a}.\) Chứng minh: a = c hoặc a + b + c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Ta Có : nếu \(a+b\ne c+d\ne0\)

\(\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

khi đó a +b = b+c suy ra a=c

nếu a+b=c+d=0 suy ra a+b+c+d=0

suy ra đpcm

16 tháng 7 2018

a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)

b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)

=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)

28 tháng 10 2017

a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)

\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1

=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)

=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)

8 tháng 4 2017

a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\left(đpcm\right)\)

b) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\left(1\right)\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)

11 tháng 12 2017

a/ đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\)(1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\)(2)

từ (1);(2) nên \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

22 tháng 4 2018

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

22 tháng 4 2018

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

17 tháng 9 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> a = b.k ; c = d.k

Ta lại có : \(\dfrac{a-b}{a+b}=\dfrac{b.k-b}{b.k+b}=\dfrac{b.\left(k-1\right)}{b.\left(k+1\right)}=\dfrac{k-1}{k+1}\)

\(\dfrac{c-d}{c+d}=\dfrac{d.k-d}{d.k+d}=\dfrac{d.\left(k-1\right)}{d.\left(k+1\right)}=\dfrac{k-1}{k+1}\)

\(\dfrac{a-b}{a+b}=\dfrac{k-1}{k+1}\) ; \(\dfrac{c-d}{c+d}=\dfrac{k-1}{k+1}\) nên \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

Vậy \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

8 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> Ta có: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) ( đpcm)

8 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

Thay (1) vào đề bài:

\(VT=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(VP=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

Khi đó: \(VT=VP\)

hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\) khi \(\left[{}\begin{matrix}a,b,c,d\ne0\\a\ne b;c\ne d\end{matrix}\right.\).

23 tháng 9 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)

b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)

Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

17 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\) (1)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

17 tháng 9 2017

Ta có: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Theo tính chất của dãy tỉ số bằng nhau:

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)\(\Leftrightarrow\)\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Vậy \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Nếu bạn muốn làm cách cơ bản thì hãy làm theo mình.Còn nếu bạn học toán nâng cao thì làm theo cách bạn Linh hay hơn.Chúc bạn học tốt

2 tháng 9 2017

Theo đề bài, ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\left(\dfrac{a+b}{c+d}\right)^2\)(*)
=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(**)
Từ (*) và (**) suy ra:
\(\left(\dfrac{a+b}{c+d}\right)^2\)=\(\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)