Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔDEF vuông tại D và ΔHKF vuông tại H có
\(\widehat{HFK}\) chung
Do đó: ΔDEF\(\sim\)ΔHKF(g-g)
Suy ra: \(\dfrac{DE}{HK}=\dfrac{DF}{HF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DE\cdot HF=DF\cdot HK\)(đpcm)
vô tcn của PTD/KM ?, https://olm.vn/thanhvien/kimmai123az, toàn câu tl copy, con giẻ rách này ko nên sông nx
Câu hỏi của Không Phaỉ Hoỉ - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Ngọc Anh Dũng - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Nguyễn Thu Hiền - Toán lớp 9 - Học toán với OnlineMath
Còn rất rất nhìu nx, ko có t/g
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(DE^2+DF^2=EF^2\)
\(\Leftrightarrow DF^2=EF^2-DE^2=5^2-3^2=16\)
hay DF=4(cm)
Xét ΔDEF có
DI là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{IE}{DE}=\dfrac{IF}{DF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{IE}{3}=\dfrac{IF}{4}\)
mà IE+IF=EF(I nằm giữa E và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IE}{3}=\dfrac{IF}{4}=\dfrac{IE+IF}{3+4}=\dfrac{EF}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{IE}{3}=\dfrac{5}{7}\\\dfrac{IF}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IE=\dfrac{15}{7}cm\\IF=\dfrac{20}{7}cm\end{matrix}\right.\)
Vậy: \(IE=\dfrac{15}{7}cm;IF=\dfrac{20}{7}cm\)