Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(DE^2+DF^2=EF^2\)
\(\Leftrightarrow DF^2=EF^2-DE^2=5^2-3^2=16\)
hay DF=4(cm)
Xét ΔDEF có
DI là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{IE}{DE}=\dfrac{IF}{DF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{IE}{3}=\dfrac{IF}{4}\)
mà IE+IF=EF(I nằm giữa E và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IE}{3}=\dfrac{IF}{4}=\dfrac{IE+IF}{3+4}=\dfrac{EF}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{IE}{3}=\dfrac{5}{7}\\\dfrac{IF}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IE=\dfrac{15}{7}cm\\IF=\dfrac{20}{7}cm\end{matrix}\right.\)
Vậy: \(IE=\dfrac{15}{7}cm;IF=\dfrac{20}{7}cm\)
b) Xét ΔDEF vuông tại D và ΔHKF vuông tại H có
\(\widehat{HFK}\) chung
Do đó: ΔDEF\(\sim\)ΔHKF(g-g)
Suy ra: \(\dfrac{DE}{HK}=\dfrac{DF}{HF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DE\cdot HF=DF\cdot HK\)(đpcm)