K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

5 tháng 4 2018

\(DM\)\(\perp\)\(AC\)

\(BE\)\(\perp\)\(AC\)

suy ra:     \(DM//BE\)

\(\Delta CBE\)có    \(DM//BE\)  áp dụng định lý Ta-lét ta có:

          \(\frac{CD}{BD}=\frac{CM}{EM}\)

\(\Delta CBH\)   có    \(DK//BH\)theo hệ quả định lý Ta-lét ta có:

            \(\frac{DK}{BH}=\frac{CK}{CH}\)   (1)

\(\Delta CEH\) có    \(KM//EH\)  theo hệ quả định lý Ta-lét ta có:

           \(\frac{KM}{EH}=\frac{CK}{CH}\)   (2)

Từ (1) và (2) suy ra:      \(\frac{DK}{BH}=\frac{KM}{EH}\)

HAY      \(\frac{BH}{EH}=\frac{DK}{KM}\)

26 tháng 3 2016

1.c/m tam giac ABE đồng dạng với tam giác ACF

xét 2 tam giác ABE va tam giác ACF có

goc AEB=goc AFC

góc A chung

suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)

2.c/m HE.HB=HC.HF

xét 2 tam giác EHC và FHB có

goc HEC=goc HFB

góc EHC=góc FHB(đ đ)

suy ra 2 tam giác EHC đồng dạng với tam giác FHB

nên ta có EH/FH=HC/HB=EC/FB 

mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)

cho lời nhân xét nhé

26 tháng 3 2016

1. c/m tam giác ACF đồng dạng tam giác ABE

xét tam giác ACF và tam giác ABE

có góc AEB=góc AFC

góc A chung

suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)

2. c/m HE.HB=HC.HF

Xét 2 tam giác HEC và tam giác HFB

Có góc HEC= góc HFB

góc EHC=góc FHB(đ.đ)

suy ra tam giác HEC đồng dạng với tam giác HFB

Nên ta có HE/HF=HC/HB=EC/FB

Suy ra HE.HB=HF.HC(đpcm)

cho mk lời nhận xét nhé