K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Vì N nằm trên đường trung trực của AH

nên NA=NH

c: Xét ΔDBC có 

DH là đường trung tuyến

CE là đường trung tuyến

DH cắt CE tại F

Do đó: F là trọng tâm

=>DF=2/3DH

17 tháng 4 2016

a) Xét tam giác ABC có AH là đường cao (gt)=> AH đồng thời là đường trung tuyến

=> HC=HB

câu b mk chả hiểu đề bài

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Xét ΔABH vuông tại H và ΔDCH vuông tại H có 

BH=CH(ΔABH=ΔACH)

AH=DH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên DC=AC(Đpcm)

26 tháng 4 2021

bạn ới tam giác cân mà bn ,lú ròi kìa

13 tháng 4 2018

a) xét tam giác ABK và CKD có

AK=KC (vì k là trung điểm của AC)

BK=KD (gt)

góc BKA=DKC (đối đỉnh)

=>tam giác ABK=CKD

b) ta có \(\widehat{ABK}=\widehat{CKD}\)(2 góc tương ứng)

mà 2 góc ở vị trí SLT

nên AB//CD

mà AB=CD (2 cạnh tương ứng)

nên tứ giác ABCD là hình bình hành

+xét \(\Delta ABC\)vuông tại B có đường trung tuyến ứng với cạnh huyền

nên BK=AK=KC

mà BK=KD

=>AK=BK=CK=DK

ta có AK+CK=BK+DK hay BD=AC

xét hình bình hành ABCD có hai đường chéo AC=BD nên ABCD là hình chữ nhật

+xét \(\Delta ABH\)\(\Delta DCH\)

BH=CH(gt)

AB=CD(cmt)

\(\widehat{ABH}=\widehat{DCH}=90^o\)(vì ABCD là HCN)

=>\(\Delta ABH=\Delta DCH\)=>\(\widehat{AHB}=\widehat{DHC}\)(2 góc tương ứng)

c)vì BK=CK => tam giác BKC cân

=>góc KBH=KCH

xét \(\Delta BMH\)\(\Delta CNH\)có 

góc KBH=KCH(cmt)

góc AHB=DHC(cmt)

BH=CH (gt)

=>\(\Delta BMH=\Delta CNH\)

    =>MH=NH

xét tam giác MHN có 

MH=NH=> MHN cân tại H

27 tháng 3 2017

A B C H D 8 10 1 2 1 2 1 2 1 2

a, Tính AC:

Lưu ý: Muốn dùng định lí Pitago thì phải chỉ ra một góc trong tam giác đó bằng 90o.

Ta có: \(\widehat{A}=90^o\) (ΔABC vuông tại A)

Áp dụng định lí Pitago vào ΔABC:

Ta có: AB2 + AC2 = BC2

=> AC2 = BC2 - AB2

=> AC2 = 102 - 82

=> AC2 = 36

=> AC2 = \(\sqrt{36}\left(cm\right)\)

=> AC = 6 (cm)

b)

- \(\Delta ABH=\Delta DBH\):

Xét ΔABH và ΔDBH có:

+ BH là cạnh chung.

+ \(\widehat{H_1}=\widehat{H_2}=90^o\) (do kẻ AH \(\perp\) BC)

+ DH = HA (gt)

=> ΔABH = ΔDBH (c-g-c)

- \(\Delta ABD\) cân:

Ta có: ΔABH = ΔDBH (vừa cm)

=> AB = BD (2 cạnh tương ứng)

=> ΔABD cân tại B.

c, ΔABC = ΔDBC:

Ta có: ΔABH = ΔDBH (câu b)

=> \(\widehat{B_1}=\widehat{B_2}\) (2 góc tương ứng)

=> AB = BD (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

+ AB = BD (cmt)

+ \(\widehat{B_1}=\widehat{B_2}\) (cmt)

+ BC là cạnh chung.

=> ΔABC = ΔDBC (c-g-c)

28 tháng 3 2017

help me câu d :(