K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2019

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)

\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)

NV
29 tháng 5 2020

\(A=\frac{3sina-2cosa}{12sin^3a+4cos^3a}=\frac{\frac{3sina}{sin^3a}-\frac{2cosa}{sin^3a}}{12+\frac{4cos^3a}{sin^3a}}=\frac{3.\frac{1}{sin^2a}-2cota.\frac{1}{sin^2a}}{12+4cot^3a}\)

\(=\frac{3\left(1+cot^2a\right)-2cota\left(1+cot^2a\right)}{12+4cot^3a}=\frac{3\left(1+3^2\right)-2.3.\left(1+3^2\right)}{12+4.3^3}=...\)

10 tháng 12 2020

Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)

A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)

NV
21 tháng 5 2020

\(A=\frac{\frac{sina}{cos^3a}-\frac{cosa}{cos^3a}}{tan^3a+3+\frac{2sina}{cos^3a}}=\frac{tana.\frac{1}{cos^2a}-\frac{1}{cos^2a}}{tan^3a+3+2tana.\frac{1}{cos^2a}}\)

\(=\frac{tana\left(1+tan^2a\right)-\left(1+tan^2a\right)}{tan^3a+3+2tana\left(1+tan^2a\right)}=\frac{3\left(1+9\right)-\left(1+9\right)}{27+3+2.3.\left(1+9\right)}=...\)

26 tháng 3 2022

\(\dfrac{4sin\alpha+5cos\alpha}{2sin\alpha-3cos\alpha}=\dfrac{\dfrac{4sin\alpha}{cos\alpha}+\dfrac{5cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{4tan\alpha+5}{2tan\alpha-3}\)

Biết \(tan\)=\(\dfrac{1}{3}\) nên ta có:

\(\dfrac{4\times\dfrac{1}{2}+5}{2\times\dfrac{1}{2}-3}=\dfrac{2+5}{2-3}=\dfrac{7}{-2}=\dfrac{-7}{2}\)

NV
25 tháng 4 2019

Nhân cả tử và mẫu của phân số chứa tan với \(sina.cosa\)

\(A=\frac{sin^2x-cos^2x}{sin^2x+cos^2x}+cos2x=sin^2x-cos^2x+cos2x=-cos2x+cos2x=0\)

\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}=\frac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin4a.cos4a+2cos^22a-1}\)

\(B=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a-1\right)}{2\left(cos^22a+2cos2a+1\right)}\)

\(C=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}=\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{sin^4a}{cos^4a}=tan^4a\)

\(D=\frac{sin^22a+4sin^4a-\left(2sina.cosa\right)^2}{4-4sin^2a-sin^22a}=\frac{sin^22a+4sin^4a-sin^22a}{4\left(1-sin^2a\right)-\left(2sina.cosa\right)^2}=\frac{4sin^4a}{4cos^2a-4sin^2a.cos^2a}\)

\(=\frac{sin^4a}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^2a.cos^2a}=\frac{sin^4a}{cos^4a}=tan^4a\)

NV
14 tháng 6 2020

\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)

\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)

\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)

\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)

\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)

NV
10 tháng 4 2019

Câu 1:

\(sina+cosa=\frac{\sqrt{2}}{2}\Leftrightarrow\left(sina+cosa\right)^2=\frac{1}{2}\)

Chia 2 vế cho \(cos^2a:\) :

\(\left(\frac{sina+cosa}{cosa}\right)^2=\frac{1}{2}.\frac{1}{cos^2a}\Leftrightarrow\left(tana+1\right)^2=\frac{1}{2}\left(1+tan^2a\right)\)

\(\Leftrightarrow tan^2a+4tana+1=0\)

Tiếp tục chia 2 vế cho \(tana\): :

\(\Rightarrow tana+4+cota=0\Rightarrow tana+cota=-4\)

\(P=tan^2a+cot^2a=tan^2a+2+cot^2a-2=\left(tana+cota\right)^2-2=\left(-4\right)^2-2=14\)

NV
10 tháng 4 2019

Câu 2:

\(3cosa+2sina=2\Rightarrow cosa=\frac{2-2sina}{3}=\frac{2}{3}\left(1-sina\right)\)

Mặt khác ta luôn có: \(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\frac{4}{9}\left(1-sina\right)^2=1\)

\(\Leftrightarrow9sin^2a+4sin^2a-8sina+4=9\)

\(\Leftrightarrow13sin^2a-8sina-5=0\Rightarrow\left[{}\begin{matrix}sina=1>0\left(l\right)\\sina=-\frac{5}{13}\end{matrix}\right.\)