K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

\(\left(\tan a+\cot a\right)^2=9\\ \dfrac{\sin^2a}{\cos^2a}+\dfrac{\cos^2a}{\sin^2a}+2.\tan a.\cot a=9\\ \dfrac{\sin^4a+\cos^4a}{\cos^2a.\sin^2a}=9-2\\ \sin^4a+\cos^4a=7\cos^2a.\sin^2a\\ \left(\sin^2a+\cos^2a\right)^2=9.\sin^2.\cos^2\\ 1^2=9.\sin^2a.\cos^2a\\ \Leftrightarrow\sin^2a.\cos^2a=\dfrac{1}{9}\\ \Leftrightarrow\sin a.\cos a=\dfrac{1}{3}\)

a) cos = 15/7

tan = 8/15

cot = 15/8

b) cos = 4/5

tan = 3/5

cot = 4/5

9 tháng 10 2016

a) sin anpha = 2/3 => góc anpha = 42o 

cos 42o = 0,743

tan 42o =  0,9

cot  42o = 1/tan 42o = 1/0,9 = 1,111

b) tan anpha + cot anpha = 3

<=> tan anpha + 1/tan anpha = 3

<=> tananpha = 2

<=> tan anpha = \(\sqrt{2}\)

=> góc anpha =  55

Ta có: a = sin 55o . cos 55o

<=> a = 0,469

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

3 tháng 10 2017

VT = sin3a.cos^3a + sin^3a.cos3a 
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a) 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a) 
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a 
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a) 
= 1/2.sin2a.cos2a + 1/2.sin4a 
= 1/4.sin4a + 1/2.sin4a 
= 3/4.sin4a = VP 
=> đpcm

P/s: Chỉ sợ you ko hiểu

NV
26 tháng 7 2021

Lớp 9 nên coi như các góc này đều nhọn

a.

\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)

\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)

b.

\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)

\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)

\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)

a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)

\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)

\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

18 tháng 7 2015

thay tan a  = sina / cos a vào VT ta có 

         \(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{cosa-sina}{cosa}}{\frac{cosa+sina}{cosa}}=\frac{cosa-sina}{cosa+sina}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)