Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cos = 15/7
tan = 8/15
cot = 15/8
b) cos = 4/5
tan = 3/5
cot = 4/5
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
VT = sin3a.cos^3a + sin^3a.cos3a
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a)
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a)
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a)
= 1/2.sin2a.cos2a + 1/2.sin4a
= 1/4.sin4a + 1/2.sin4a
= 3/4.sin4a = VP
=> đpcm
P/s: Chỉ sợ you ko hiểu
Lớp 9 nên coi như các góc này đều nhọn
a.
\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)
\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)
b.
\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)
\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)
\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)
a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)
\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)
\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
thay tan a = sina / cos a vào VT ta có
\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{cosa-sina}{cosa}}{\frac{cosa+sina}{cosa}}=\frac{cosa-sina}{cosa+sina}\)
Lời giải:
a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
b)
\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
c) Đề bài sai.
\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)
\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)
\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)
d)
\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)
\(=1-2\sin a\cos a\)
e) ĐK tồn tại tan là $\cos x\neq 0$
Vì \(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)
Ta có:
\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)
\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)
\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)
\(\left(\tan a+\cot a\right)^2=9\\ \dfrac{\sin^2a}{\cos^2a}+\dfrac{\cos^2a}{\sin^2a}+2.\tan a.\cot a=9\\ \dfrac{\sin^4a+\cos^4a}{\cos^2a.\sin^2a}=9-2\\ \sin^4a+\cos^4a=7\cos^2a.\sin^2a\\ \left(\sin^2a+\cos^2a\right)^2=9.\sin^2.\cos^2\\ 1^2=9.\sin^2a.\cos^2a\\ \Leftrightarrow\sin^2a.\cos^2a=\dfrac{1}{9}\\ \Leftrightarrow\sin a.\cos a=\dfrac{1}{3}\)