K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Nối C với I.

Tam giác ABC vuông cân tại C (gt) \(\Rightarrow\widehat{A}=45^0\)

I là trung điểm của AB (gt) \(\Rightarrow IA=IB=\frac{1}{2}AB\)

\(\Delta ABC\) vuông tại C có CI là đường trung tuyến ứng với cạnh huyền AB nên CI = 1/2 AB

\(\Delta ABC\)cân tại C có CI là đường trung tuyến nên CI là đường cao đồng thời cũng là đường p/g (tính chất tam giác cân)

\(\Rightarrow CI\perp AB,\widehat{KCI}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}.90^0=45^0\)

Bạn dễ dàng chứng minh được MHCK là hình chữ nhật (vì có 3 góc vuông) và tam giác AHM vuông cân tại H

\(\Rightarrow AH=HM=CK\)

\(\Delta AHI=\Delta CKI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}IH=IK\\\widehat{AIH}=\widehat{CIK}\end{cases}}\) 

Ta có: \(\widehat{HIK}=\widehat{HIC}+\widehat{CIK}=\widehat{AIH}+\widehat{HIC}=\widehat{AIC}=90^0\)

Tam giác IHK có: \(IH=IK,\widehat{HIK}=90^0\left(cmt\right)\)

Do đó: \(\Delta IHK\) vuông cân tại I.

Chúc bạn học tốt.

26 tháng 6 2021

Bạn tự vẽ hình nhé hình này rất dễ thôi :v

a)Xét tam giác cân ABC có:AM là trung tuyến

`=>` AM là đường cao

`=>AM bot BC`

Xét tam giác ABM và tam giác ACM có:

`AM` chung

`hat{AMB}=hat{AMC}=90^o(CMT)`

`BM=MC`(do m là trung điểm)

`=>Delta ABM=Delta ACM(cgc)`

`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:

`BM=CM`(M là trung điểm)

`hat{ABC}=hat{ACB}`(do tam giác ABC cân)

`=>Delta BHM=Delta CKM`(ch-gn)

`=>BH=CK`

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải