Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình hình này vẽ ko khó đâu.
a) Xét ΔABM và ΔACM có:
AC=AB(gt)
AM là cạnh chung
MC=MB(M là trung điểm BC)
=>ΔABM=ΔACM(c.c.c)
b) Vì ΔABM=ΔACM
=>^AMC=^AMB(hai góc tương ứng)
Xét ΔDMC và ΔDMB có:
MC=MB
^DMC=^DMB
DM là cạnh chung
=>ΔDMC=ΔDMB(c.g.c)
=>DB=DC(hai cạnh tương ứng)
c)Ta thấy ^CMI và ^DMB là hai góc đối đỉnh
=>^CMI=^DMB
Mà ^DMC=^DMB
=>^CMI=^DMC
Xét ΔCMI và ΔCMD có:
MI=MD(M là trung điểm của DI)
^CMI=^DMC
MC:cạnh chung
=>ΔCMI=ΔCMD(c.g.c)
=>^DCM=^MCI(hai góc tương ứng)
=>CM là pg ^DCI
=>CB là pa ^DCI
Câu này bác nào có cách ≠ thì cho cháu bt nhé
Có thêm cách làm khác cho câu c.
Từ bài làm câu a, b em suy ra được. DI vuông BC
Xét tam giác DCI có: CI là đường cao đồng thời là đường trung tuyến ( I là trung điểm DC)
=> Tam giác DIC cân => CI cũng là đường phân giác ^DCI => CB là đường phân giác ^DCB
( Tuy nhiên cô ko biết tính chất trên em đã được học hay chưa. Làm theo cách của em đã ổn rồi _ Gửi Linh )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
\Tk
a) Xét ΔABM và ΔACM có:
AC=AB(gt)
AM là cạnh chung
MC=MB(M là trung điểm BC)
=>ΔABM=ΔACM(c.c.c)
b) Vì ΔABM=ΔACM
=>^AMC=^AMB(hai góc tương ứng)
Xét ΔDMC và ΔDMB có:
MC=MB
^DMC=^DMB
DM là cạnh chung
=>ΔDMC=ΔDMB(c.g.c)
=>DB=DC(hai cạnh tương ứng)
c)Ta thấy ^CMI và ^DMB là hai góc đối đỉnh
=>^CMI=^DMB
Mà ^DMC=^DMB
=>^CMI=^DMC
Xét ΔCMI và ΔCMD có:
MI=MD(M là trung điểm của DI)
^CMI=^DMC
MC:cạnh chung
=>ΔCMI=ΔCMD(c.g.c)
=>^DCM=^MCI(hai góc tương ứng)
=>CM là pg ^DCI
=>CB là pg ^DCI