Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác DBI và CIE
góc DIB=CIE (đđỉnh)
DI=IE (gt)
BI=IC (gt)
vậy tam giác DBI=CIE (c.g.c)
Vậy BD=CE (2 cạnh tương ứng)
Vậy góc B=ICE (2 góc tương ứng)
Vì góc B=ACI (gt)
B=ICE (cmt)
Vậy ACI=ICE
Vậy CB là tia phân giác của góc ACE
Xét \(\Delta\)DIB và \(\Delta\)CIE có:
DI = IE ( I là trung điểm của DE )
\(\widehat{DIB}\)=\(\widehat{CIE}\)( đối đỉnh)
BI =IC ( I là trung điểm của BC )
\(\Rightarrow\)\(\Delta\)DIB = \(\Delta\)CIE (c.g.c)
\(\Rightarrow\)BD = CE ( hai cạnh tương ứng
\(\widehat{B}=\widehat{ICE}\)( hai góc tương ứng)
mà \(\widehat{B}=\widehat{ACI}\)
\(\Rightarrow\)\(\widehat{ICE}=\widehat{ACI}\)
\(\Rightarrow\)CB là tia phân giác của \(\widehat{ACE}\)
Bài giải
B A D I C E Hình mình vẽ hơi xấu
a) \(\Delta BID=\Delta CIE\left(g-c-g\right)\)nên BD=CE
b) \(\Delta BID=\Delta CIE\left(g-c-g\right)\)nên \(\widehat{ECI}=\widehat{DBI}\)(hai góc tương ứng) mà \(\widehat{ABC}=\widehat{BCE}.\)
\(\Rightarrow\)CB là tia phân giác của góc ACE
hình thì bạn tự vẽ nha
a,xét hai tam giác BAH và CAH ta có:
AB=AC
BH=CH(vì H là trung điểm của BC)
AD là cạnh chung
=>BAH và CAH là hai tam giác bằng nhau(cgc)
b,theo câu a ta có:BAH và CAH là hai tam giác bằng nhau =>tam giác ABH và tam giác ACH bằng nhau =>góc B=góc C
Hay góc abc=góc ach
a) Vì AB = AC
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (hai góc ở đáy)
Ta có hình vẽ:
A B C D I E
a/ Vì tam giác ABC có AB = AC => \(\Delta\)ABC cân
=> \(\widehat{ABC}\)=\(\widehat{ACB}\) (đpcm)
b/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (đã chứng minh)
\(\widehat{BID}\)=\(\widehat{CIE}\) (đối đỉnh)
Mà tổng 3 góc trong tam giác = 1800
=> \(\widehat{BDI}\)=\(\widehat{CEI}\)
Ta có: BD = CE (GT)
DI = IE (GT)
=> \(\Delta\)BID = \(\Delta\)CIE
Ta có: \(\widehat{BID}\)+\(\widehat{DIC}\)=\(\widehat{DIC}\)+\(\widehat{CIE}\)=1800 (kề bù)
=> \(\widehat{BIC}\)=1800 hay B,I,C thẳng hàng