K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

a)

Xét tam giác $ABH$ và $CBA$ có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\Rightarrow \triangle ABH\sim \triangle CBA(g.g) \)

\(\Rightarrow \frac{AB}{CB}=\frac{BH}{BA}\Rightarrow BA^2=BH.BC\) (đpcm)

b)

Xét tam giác $BAH$ có đường phân giác $BI$, áp dụng tính chất đường phân giác ta có: \(\frac{IA}{IH}=\frac{BA}{BH}\Rightarrow IA.BH=IH.AB\)

c)

Xét tam giác $ABI$ và $CBD$ có:

\(\widehat{ABI}=\widehat{CBD}(=\frac{\widehat{ABC}}{2})\)

\(\widehat{BAI}=\widehat{BCD}(=90^0-\widehat{A_1})\)

\(\Rightarrow \triangle ABI\sim \triangle CBD(g.g)\)

Ta biết rằng nếu 2 tam giác đồng dạng theo tỉ số $k$ thì diện tích tương ứng của chúng sẽ tỉ lệ theo $k^2$

Do đó:
\(\frac{S_{ABI}}{S_{CBD}}=(\frac{AB}{CB})^2=(\frac{6}{10})^2=\frac{9}{25}\)

Cách khác:

Ta có: \(\frac{S_{ABI}}{S_{CBD}}=\frac{BH.AI}{AB.CD}(1)\)

Theo kết quả phần a: \(AB^2=BH.BC\Rightarrow \frac{BH}{AB}=\frac{AB}{BC}(2)\)

\(\triangle ABI\sim \triangle CBD\) (cmt) \(\rightarrow \frac{AI}{CD}=\frac{AB}{CB}(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{S_{ABI}}{S_{CBD}}=\frac{AB}{CB}.\frac{AB}{CB}=\frac{9}{25}\)

d)

Theo phần b: \(\frac{IH}{IA}=\frac{BH}{BA}(3)\)

Theo phần a: \(AB^2=BH.BC\Rightarrow \frac{BH}{BA}=\frac{AB}{BC}(4)\)

Xét tam giác $BAC$ có phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{AD}{DC}=\frac{AB}{BC}(5)\)

Từ \((3);(4);(5)\Rightarrow \frac{IH}{IA}=\frac{AD}{DC}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Hình vẽ:

Các trường hợp đồng dạng của tam giác vuông

a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )

⇒Bc=10(cm)⇒Bc=10(cm)

Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)

⇒AD=AC−DC=8−5=3(cm)

4 tháng 5 2016

Bài 1:

 Áp dụng BĐT Cô-si:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

CMTT rồi cộng lại, ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

a)

Tam giác $BAH$ có đường phân giác $BI$. Áp dụng tính chất đường phân giác ta có: \(\frac{IH}{IA}=\frac{BH}{BA}(1)\Rightarrow IA.BH=IH.BA\)

b)

Xét tam giác $BAH$ và $BCA$ có:

\(\widehat{B}\) chung

\(\widehat{BHA}=\widehat{BAC}(=90^0)\)

\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BC}=\frac{BH}{BA}(2)\Rightarrow BA^2=BH.BC\) (đpcm)

c)

Tam giác $BAC$ có đường phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{DA}{DC}=\frac{BA}{BC}(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{IH}{IA}=\frac{BH}{BA}=\frac{BA}{BC}=\frac{DA}{DC}\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Hình vẽ:
Ôn tập cuối năm phần hình học