Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết
Hiện tại hình không vẽ được mình chỉ ghi lời giải thôi nha !
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AB^2\cdot AC^2}\)
Theo công thức tính diện tích tam giác vuông ta có:\(S=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH^2.BC^2=AB^2.AC^2\)
Khi đó \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{BC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AH^2\cdot BC^2}=\frac{1}{AH^2}\)
=> đpcm
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
a: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}=\dfrac{BC^2}{\left(AB\cdot AC\right)^2}\)
\(\Leftrightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)
hay \(AH\cdot BC=AB\cdot AC\)(luôn đúng)
b: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)