Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath
Em kham khảo link này nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath
Câu a, b, c em tham khảo tại đây :
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Gọi M là giao điểm của AC và BD.
Xét tam giác AMB có AD và BC là các đường cao nên E là trực tâm.
Suy ra \(ME\perp AB\)
Lại có \(EK\perp AB\)nên E, K, M thẳng hàng.
Hay AC, BD, EK đồng quy tại M.
a: góc CAE=góc BAE=60/2=30 độ
góc KEB=90-30=60 độ
góc BED=góc AEC=90-30=60 độ
=>góc KEB=góc DEB
=>EB là phân giác của góc KED
góc AEK=góc BEK
=>EK là phân giác của góc BEA
b:Đề sai rồi bạn
a:
Ta có: DE\(\perp\)AC
AB\(\perp\)AC
Do đó: DE//AB
Xét ΔCAB có ED//AB
nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)
=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)
b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có
\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)
Do đó: ΔHBA~ΔEDC
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.