K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

loading... a) Xét ∆ABM và ∆CDM có:

AM = CM (gt)

AMB = CMD (đối đỉnh)

BM = DM (gt)

⇒ ∆ABM = ∆CDM (c-g-c)

b) Do ∆ABM = ∆CDM (cmt)

⇒ MAB = MCD (hai góc tương ứng)

⇒ MCD = 90⁰

⇒ MC ⊥ CD

⇒ AC ⊥ CD

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

a: AC=căn 5^2-3^2=4cm

b: Xét ΔMAB và ΔMCD có

MA=MC

góc AMB=góc CMD

MB=MD

=>ΔMAB=ΔMCD

=>AB=CD

c: AB+BC=CD+BC>DB=2BM(ĐPCM)

24 tháng 3 2022

A) Vì tam giác ABC vuông tại A nên ta có :

      AB2+AC2=BC2AB2+AC2=BC2

⇔AC2=BC2−AB2⇔AC2=BC2−AB2

⇔AC2=52−32⇔AC2=52−32

⇔AC2=25−9⇔AC2=25−9

⇔AC2=16⇔AC2=16

⇔AC=4

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

\(\Leftrightarrow\widehat{ACD}=90^0\)

hay AC\(\perp\)CD(Đpcm)

5 tháng 12 2021

đpcm là j vậy bạn

 

a)

Sửa đề: Chứng minh ΔMAB=ΔMCD và \(\widehat{MCD}=90^0\)

Xét ΔMAB và ΔMCD có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔMAB=ΔMCD(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCD}=90^0\)(đpcm)

b) Xét ΔDMA và ΔBMC có 

DM=BM(gt)

\(\widehat{DMA}=\widehat{BMC}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

Do đó: ΔDMA=ΔBMC(c-g-c)

Suy ra: \(\widehat{ADM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{ADM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c)

Ta có: MB=MD(gt)

mà D,M,B thẳng hàng(gt)

nên M là trung điểm của BD

Xét ΔMAB vuông tại A và ΔMAK vuông tại A có

MA chung

AB=AK(gt)

Do đó: ΔMAB=ΔMAK(hai cạnh góc vuông)

Suy ra: MB=MK(hai cạnh tương ứng)

mà \(BD=2\cdot MB\)(M là trung điểm của BD)

nên \(BD=2\cdot MK\)(đpcm)

14 tháng 2 2021

cảm ơn bn nhiều