Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Xét \(\Delta\)NMI và \(\Delta\)PRI có:^I chung;\(\widehat{IRP}=\widehat{NMI}=90^0\) nên \(\Delta\)NMI ~ \(\Delta\)PRI ( g.g )
\(\Rightarrow\frac{IM}{IR}=\frac{IN}{IP}\Rightarrow IM\cdot IP=IN\cdot IR\)
b
Xét \(\Delta\)PKM và \(\Delta\)PIR có:^P chung;^PMK=^PRI=900 \(\Rightarrow\Delta\)PKM ~ \(\Delta\)PIR ( g.g )
\(\Rightarrow\frac{PK}{PI}=\frac{PM}{PR}\Rightarrow PM\cdot PI=PK\cdot PR\)
Tương tự:\(\frac{PG}{PR}=\frac{PK}{PN}\Rightarrow PG\cdot PN=PK\cdot PR\)
\(\Rightarrow PI\cdot PM=PG\cdot PN\)
Tương tự sẽ có:\(NI\cdot NR=NG\cdot NP\)
Cộng vế theo vế có đpcm
c
Xét \(\Delta\)IMR và \(\Delta\)INP có:^I chung;\(\frac{IM}{IR}=\frac{IN}{IP}\) nên \(\Delta\)IMR ~ \(\Delta\)INP ( c.g.c )
\(\Rightarrow\widehat{IRM}=\widehat{IPN}=45^0\)
d
Câu hỏi của Nguyễn Ngọc Thanh Tâm - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo mình chứng minh công thức tại đây nhé !
Áp dụng vào ta có:
\(RT^2=IR\cdot RM-IT\cdot TM< IR\cdot RM\)
=> đpcm
Thôi chết,mình quên gửi hình,bạn với OLM thông cảm nha ! Không có hack câu trả lời gì hết nhá,quên thôi.
a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△DBE∼△ACE (g-g).
b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)
-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)
c) EM cắt BC tại F.
-△BCE có: 2 đường cao BD và CA cắt nhau tại M.
\(\Rightarrow\)M là trực tâm của △BCE.
\(\Rightarrow\)EM⊥BC tại F.
-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).
\(\Rightarrow\)△BMF∼△BCD (g-g).
\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)
-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.
\(\Rightarrow\)△CMF∼△CBA (g-g).
\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)
không đổi.