K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB∼ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Ta có: BC=BH+HC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Ta có: \(AB^2=BH\cdot BC\)(cmt)

\(\Leftrightarrow AB^2=4\cdot13\)

hay \(AB=2\sqrt{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)

hay \(AC=3\sqrt{13}\left(cm\right)\)

5 tháng 7 2021

a)

Trong tam giác ABC có : 

\(AH^2=BH.CH=4.9=36\Rightarrow AH=6\left(cm\right)\)

Áp dụng Pitago trong tam giác AHB vuông tại H ta có :

\(AB^2=AH^2+BH^2=6^2+4^2=52=BH.BC=4\left(9+4\right)\)

(đpcm)

b)

\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-52}=3\sqrt{13}\)

3 tháng 4 2017

Đường trung tuyến AM đường cao AH mới đúng chứ bạn
 

3 tháng 4 2017

Bạn viết cái gì vậy ko hiểu

21 tháng 5 2020

a) Xét tam giác ABC và tam giác HBA có

Góc BAC = góc BHA = 90độ 

góc B chung

=)tg ABC đồng dạng với tg HBA

=)AB/BH = BC/AB (cặp cạnh tương ứng)

=) AB^2 = BH.BC  (đpcm)

b) có AB^2 = BH.BC (cmt)

mà BH = 4cm , BC = BH + CH =4+9 = 13cm

=) AB^2 = 4+13 = 17

=) AB = \(\sqrt{17}\)cm

xét tg vuông ABC áp dụng định lý Py-ta-go ta có

AB^2 + AC^2 = BC^2

thay số: \(\sqrt{17}^2\)+ AC^2 = 13^2

=) AC =\(2\sqrt{38}\)cm

vậy nhé chứ ý c mik thấy đầu bài sai sai

9 tháng 6 2021

Bạn tự vẽ hình nhé

a) Xét Tg ABC và Tg HBA có:

Góc BAC = Góc AHB(=90độ)

Góc B chung

=> Tg ABC ~ Tg HBA(g.g)

=> AB/HB=BC/BA

=> AB^2=HB. BC

=> Đpcm

b) BC= BH+ HC= 4+9=13cm

Có AB^2= HB.BC (câu a)

=> AB^2= 4.13= 52

=> AB= căn 52(cm)

Có Tg ABC vuông tại A

=> AC^2= BC^2-AB^2= 13^2- 52=117

=> AC= căn 117 (cm)

9 tháng 5 2022

a, Xét Δ ABC và Δ CBH

Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)

            \(\widehat{ABC}=\widehat{CBH}\) (góc chung)

=> Δ ABC ∾ Δ CBH (g.g)

b, Ta có : Δ ABC ∾ Δ CBH (cmt)

=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)

=> \(BC^2=AB.BH\)

9 tháng 5 2022

c,

Ta có : AB = AH + HB

=> AB = 4 + 9

=> AB = 13 (cm)

Ta có : \(BC^2=AB.BH\left(cmt\right)\)

=> \(BC^2=13.9\)

=> \(BC^2=117\)

=> BC = 10,8 (cm)

Xét Δ ABC

Ta có : \(AB^2=AC^2+BC^2\)

=> \(13^2=AC^2+10,8^2\)

=> \(169=AC^2+116,64\)

=> \(169-116,64=AC^2\)

=> \(52,36=AC^2\)

=> AC = 7,2 (cm)

Xét Δ ABC vuông tại C

=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)

=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)

=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)

5 tháng 5 2022

\(\wr\)

a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=4^2/5=3,2cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: ΔBAC đồng dạng với ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

BH=4^2/5=3,2cm

CD là phân giác

=>AD/AC=DB/BC

=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5

=>AD=1,5cm

b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: Xét ΔBAC vuông tại A có AH là đường cao

nên AB^2=BH*BC

2 tháng 3 2022

a. Xét tam giác ABC và tam giác HBA, có:

\(\widehat{A}=\widehat{H}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

\(\Leftrightarrow AB^2=BC.BH\) 

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)

Ta có:

\(AB^2=BC.BH\) ( cmt )

\(\Leftrightarrow15^2=25.BH\)

\(\Leftrightarrow225=25BH\)

\(\Leftrightarrow BH=9cm\)

\(\Rightarrow CH=BC-BH=25-9=16cm\)

 

9 tháng 5 2022

a,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)

=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)

=> Δ AHB ∾ Δ CHA (g.g)

=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)

=> \(AH^2=HB.CH\)

 

9 tháng 5 2022

b, Ta có : \(AH^2=BH.CH\) (cmt)

=> \(AH^2=4.9\)

=> \(AH^2=36\)

=> AH = 6

Xét Δ AHB, có :

\(AB^2=AH^2+BH^2\)

=> \(AB^2=6^2+4^2\)

=> \(AB^2=52\)

=> AB = 7,2 (cm)

Xét Δ AHC, có :

\(AC^2=AH^2+CH^2\)

=> \(AC^2=6^2+9^2\)

=> \(AC^2=117\)

=> AC = 10,8 (cm)

Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\)

=> \(BC^2=7,2^2+10,8^2\)

=> \(BC^2=168,48\)

=> BC = 12,9 (cm)

Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)

=> MC = 6,45 (cm)

Ta có : BC = BH + HM + MC

=> 12,9 = 4 + HM + 6,45

=> HM = 12,9 - 4 - 6,45

=> HM = 2,45 (cm)

Xét Δ AMH vuông tại H, có :

\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)

=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)

=> \(S_{\Delta AMH}=7,35\left(cm\right)\)