K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)

=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)

=> Δ AHB ∾ Δ CHA (g.g)

=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)

=> \(AH^2=HB.CH\)

 

9 tháng 5 2022

b, Ta có : \(AH^2=BH.CH\) (cmt)

=> \(AH^2=4.9\)

=> \(AH^2=36\)

=> AH = 6

Xét Δ AHB, có :

\(AB^2=AH^2+BH^2\)

=> \(AB^2=6^2+4^2\)

=> \(AB^2=52\)

=> AB = 7,2 (cm)

Xét Δ AHC, có :

\(AC^2=AH^2+CH^2\)

=> \(AC^2=6^2+9^2\)

=> \(AC^2=117\)

=> AC = 10,8 (cm)

Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\)

=> \(BC^2=7,2^2+10,8^2\)

=> \(BC^2=168,48\)

=> BC = 12,9 (cm)

Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)

=> MC = 6,45 (cm)

Ta có : BC = BH + HM + MC

=> 12,9 = 4 + HM + 6,45

=> HM = 12,9 - 4 - 6,45

=> HM = 2,45 (cm)

Xét Δ AMH vuông tại H, có :

\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)

=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)

=> \(S_{\Delta AMH}=7,35\left(cm\right)\)

3 tháng 4 2017

Đường trung tuyến AM đường cao AH mới đúng chứ bạn
 

3 tháng 4 2017

Bạn viết cái gì vậy ko hiểu

7 tháng 6 2016

a, đồng dạng trường hợp góc - góc 

b, Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên ta có : 

AM = BM = CM = BC/2 = (BH + CH )/ 2 = 13/2 = 6,5 ( cm ) 

ta có : HM = BM - BH = 6,5 - 4 = 2,5 ( cm ) 

áp dụng định lí Pytago cho tam giác vuông AHM ta có : \(AH^2=AM^2-HM^2\Rightarrow AH=\sqrt{AM^2-HM^2}=\sqrt{6,5^2-2,5^2}=6.\) (cm )

\(S_{AMH}=\frac{AH.HM}{2}=\frac{6.2,5}{2}=7,5\left(cm^2\right)\)

4 tháng 12 2017

Xét hai tam giác vuông HBA,HAC có:

∠ (BHA) =  ∠ (AHC) =  90 0

∠ B =  ∠ (HAC) (hai góc cùng phụ  ∠ C )

⇒ △ HBA đồng dạng △ HAC (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ H A 2 = HB.HC = 4.9 = 36(cm)

Suy ra: AH = 6(cm)

Lại có: BM = 1/2 BC = 1/2 .(9+4) = 1/2 .13 = 6,5cm

Mà HM = BM – BH = 6,5 – 4 = 2,5cm

Vậy S A H M  = 1/2 AH.HN = 1/2 .6.2,5 = 7,5 c m 2

31 tháng 3 2017

Ta có BH=4 ; CH=9 =>BC = 13

Vì AM là đường trung tuyến nên AM = MC = BC/2 = 6.5

Ta có HM = BC-( BH + MC ) = 2,5

lại có AM là đường trung tuyến nên AM = BC/2 = 6,5

Xét tam giác vuông AHM : AH^2 = AM^2 - HM^2

                                       =>. AH = 6

S tam giác AMH = 1/2.AH.HM = 7,5

30 tháng 3 2017

──────▄▌▐▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▌
───▄▄██▌█ ░Xe chở 100000000 đến đây..
▄▄▄▌▐██▌█ ░░░░░░ ░░░░░░░░░ ░░░░░░░▐\.
███████▌█▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▌ \.
▀❍▀▀▀▀▀▀▀❍❍▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀▀❍❍ ▀▀.

░░░░░░███████ ]▄▄▄▄▄▄▄▄▃
▂▄▅█████████▅▄▃▂
I███████████████████].
◥⊙▲⊙▲⊙▲⊙▲⊙▲⊙▲⊙◤…

                                Bằng chíu

8 tháng 5 2019

a) 

Ta có \(\Delta ABC\approx\Delta HBA\)vì hai tam giác vuông này có chung góc nhọn B 

Lại có \(\Delta ABC\approx\Delta HAC\)có chung góc nhọn C

\(\Rightarrow\Delta HBA\approx\Delta HAC\)(tính chất bắc cầu)

b)Ta có AM là trung tuyến nên \(BM=\frac{1}{2}\left(BH+CH\right)=\frac{13}{2}\)

\(HM=BM-BH=\frac{13}{2}-4=\frac{5}{2}\)

Vì \(\Delta HBA\approx\Delta HAC\)nên 

\(\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow\frac{4}{HA}=\frac{HA}{9}\)

\(\Rightarrow HA^2=36\Rightarrow HA=6\)

\(S_{ABC}=\frac{\frac{5}{2}\cdot6}{2}=\frac{15}{2}\left(cm^2\right)\)

9 tháng 5 2019

Bạn ơi tính diện tích tam giác AHM nha 

1 tháng 5 2021

undefined

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=BH\cdot CH\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{1}{2}\cdot13=6.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAMH vuông tại H, ta được:

\(AM^2=AH^2+MH^2\)

\(\Leftrightarrow MH^2=AM^2-AH^2=6.5^2-6^2=6.25\)

hay MH=2,5(cm)

Diện tích tam giác AMH là:

\(S_{AMH}=\dfrac{AH\cdot HM}{2}=\dfrac{6\cdot2.5}{2}=\dfrac{15}{2}=7.5\left(cm^2\right)\)

12 tháng 5 2017

D

9 tháng 5 2022

a, Xét Δ ABC và Δ CBH

Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)

            \(\widehat{ABC}=\widehat{CBH}\) (góc chung)

=> Δ ABC ∾ Δ CBH (g.g)

b, Ta có : Δ ABC ∾ Δ CBH (cmt)

=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)

=> \(BC^2=AB.BH\)

9 tháng 5 2022

c,

Ta có : AB = AH + HB

=> AB = 4 + 9

=> AB = 13 (cm)

Ta có : \(BC^2=AB.BH\left(cmt\right)\)

=> \(BC^2=13.9\)

=> \(BC^2=117\)

=> BC = 10,8 (cm)

Xét Δ ABC

Ta có : \(AB^2=AC^2+BC^2\)

=> \(13^2=AC^2+10,8^2\)

=> \(169=AC^2+116,64\)

=> \(169-116,64=AC^2\)

=> \(52,36=AC^2\)

=> AC = 7,2 (cm)

Xét Δ ABC vuông tại C

=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)

=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)

=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)