Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR
a: ta có: ΔPQR vuông tại P
=>\(QR^2=PQ^2+PR^2\)
=>\(QR^2=8^2+6^2=100\)
=>\(QR=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔRPQ vuông tại P
mà PM là đường trung tuyến
nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)
b: Xét tứ giác PNMK có
\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)
=>PNMK là hình chữ nhật
c: Xét ΔRPQ có
M là trung điểm của RQ
MK//RP
Do đó: K là trung điểm của PQ
=>PK=KQ(1)
Ta có: PKMN là hình chữ nhật
=>PK=MN(2)
Từ (1) và (2) suy ra KQ=MN
Ta có: PK//MN
K\(\in\)PQ
Do đó: NM//KQ
Xét tứ giác KQMN có
KQ//MN
KQ=MN
Do đó: KQMN là hình bình hành
=>QN cắt MK tại trung điểm của mỗi đường
mà O là trung điểm của MK
nên O là trung điểm của QN
=>OQ=ON
Xét tứ giác PMQH có
K là trung điểm chung của PQ và MN
=>PMQH là hình bình hành
Hình bình hành PMQH có PQ\(\perp\)MH
nên PMQH là hình thoi
a: Xét ΔPQR có
E là trung điểm của PQ
F là trung điểm của PR
DO đó: EF là đường trung bình
=>EF//QR và EF=QR/2
=>EF//QG và EF=QG
Xét tứ giác QEFR có EF//QR
nên QEFR là hình thang
b: EF=QR/2=16/2=8(cm)
c: Xét tứ giác EFGQ có
EF//GQ
EF=GQ
Do đó: EFGQ là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a/Vì M là trung điểm của PQ và N là trung điểm của QR nên MN là đường trung bình của tam giác PQR
b/Vì MN là đường trung bình của tam giác PQR nên\(MN=\frac{1}{2}PR\)
Mà PR=12cm nên suy ra MN=6cm
c/ Vì MN là đường trung bình của tam giác PQR nên MN//PR
Suy ra tứ giác MNPR là hình thang, mà \(\widehat{MPR}=90\)(do tam giác PQR vuông tại P)
Vậy MNPR là hình thang vuông