K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: OE=6-2=4cm

=>OE/OP=2/3

OF=9-3=6cm

=>OF/OQ=2/3

b: Xét ΔOFE và ΔOQP có

OE/OP=OE/OP

góc O chung

=>ΔOFE đồng dạng với ΔOQP

c: ΔOFE đồng dạng vơi ΔOQP

=>góc OFE=góc OQP

 

a: Xét ΔQOP có QM/QO=QK/QP

nênMK//OP và MK=OP/2

=>MK//OI và MK=OI

=>OIKM là hình bình hành

mầ góc MOI=90 độ

nên OIKM là hình chữ nhật

b: Để OIKM là hình vuông thì OI=OM

=>OP=OQ

c: \(S_{OPQ}=\dfrac{1}{2}\cdot10\cdot15=75\left(cm^2\right)\)

\(S_{OIKM}=5\cdot7.5=37.5\left(cm^2\right)\)

a: Xét ΔAOE và ΔBOF có 

OA/OB=OE/OF(4/6=2/3)

\(\widehat{AOE}=\widehat{BOF}\)

Do đó: ΔAOE\(\sim\)ΔBOF

b: TA có: ΔAOE\(\sim\)ΔBOF

nên AE/BF=OE/OF

=>2,4/BF=2/3

hay BF=3,6(cm)

1: Xét ΔOPQ có 

I là trung điểm của PQ

IN//OP

Do đó: N là trung điểm của OQ

Xét ΔOPQ có 

I là trung điểm của PQ

IM//OQ

Do đó: M là trung điểm của OP

Xét ΔMPI và ΔNQI có 

MP=NQ

\(\widehat{P}=\widehat{Q}\)

PI=QI

Do đó: ΔMPI=ΔNQI

Suy ra: IM=IN

hay ΔIMN cân tại I

2: Ta có: OM=ON

nên O nằm trên đường trung trực của MN(1)

Ta có: IM=IN

nên I nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OI là đường trung trực của MN