K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: Xét tứ giác BHCI có 

E là trung điểm của BC

E là trung điểm của HI

Do đó: BHCI là hình bình hành

21 tháng 12 2017

Bạn có lời giải chưa

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

9 tháng 6 2021

minhf nữa

22 tháng 10 2023

a: Xét tứ giác BHCD có

M là trung điểm chung của BC và HD

=>BHCD là hình bình hành

b: BHCD là hình bình hành

=>BH//CD và BD//CH

BH//CD

CA\(\perp\)BH

Do đó: \(CA\perp\)CD

=>ΔACD vuông tại C

BD//CH

AB\(\perp\)CH

Do đó: AB\(\perp\)BD

=>ΔABD vuông tại B

c: ΔBAD vuông tại B

mà BI là đường trung tuyến

nên IB=IA=ID(1)

ΔCAD vuông tại C

mà CI là đường trung tuyến

nên CI=IA=ID(2)

Từ (1) và (2) suy ra IA=IB=IC=ID

18 tháng 10

a) Chứng minh tứ giác BHCD là hình bình hành:

Xét tứ giác BHCD:

    M là trung điểm của BC (gt)

   M là trung điểm của HD (gt)

    *Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.

    * Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).

b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:

 

Xét hình bình hành BHCD:

   BH // CD (tính chất hình bình hành)

   CH // BD (tính chất hình bình hành)

Xét tam giác ABC:

    * AF là đường cao (gt) => AF vuông góc với BC

    * Mà BH // CD (cmt) => AF vuông góc với CD

Tương tự:

     CH // BD (cmt) => AF vuông góc với BD

Kết luận:

    * Tam giác ABD vuông tại B (AF vuông góc với BD)

    * Tam giác ACD vuông tại C (AF vuông góc với CD)

 

**c) Chứng minh IA=IB=IC=ID:**

 

* **Xét tam giác AHD:**

    * M là trung điểm của HD (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác AHD

    * Vậy IA = ID (tính chất đường trung tuyến trong tam giác)

* **Xét tam giác BCD:**

    * M là trung điểm của BC (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác BCD

    * Vậy IB = IC (tính chất đường trung tuyến trong tam giác)

* **Kết luận:**

    * IA = IB = IC = ID

 

**Tóm lại:**

 

* Tứ giác BHCD là hình bình hành.

* Tam giác ABD vuông tại B và tam giác ACD vuông tại C. 

* IA = IB = IC = ID.