Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô gợi ý nhé.
a. Nối AM, AN ta thấy tam giác AMN cân tại A. Từ đó suy ra đc AMN = ANM và suy ra FDA = ADE.
b. Cô làm cách này nhưng dùng kt lớp 9, em thử xem còn cách khác không nhé.
Góc FDA = ADE = ANE nên FAND là từ giác nội tiếp. Từ đó suy ra góc FAD = FND.
Vậy suy ra góc FAE = EDC = FDB = FMB hay tứ giác MAEB nội tiếp. Suy ra góc MAB = MEB. Mà MAB = FAD.
Vậy góc MEB = FND hay BE//DN. Vậy BE là đường cao. Tương tự CF cũng là đường cao nên AD, BE, CF đồng quy.
a: Ta có: E và D đối xứng nhau qua AB
nên AB là đường trung trực của ED
Suy ra: AB\(\perp\)ED tại I và I là trung điểm của ED
Xét ΔAEI vuông tại I và ΔADI vuông tại I có
AI chung
EI=DI
Do đó: ΔAEI=ΔADI
M đối xứng D qua AB
nên AM=AD; DM=DB
=>AB là phân giác của góc MAD
Xét ΔAME và ΔADE có
AM=AD
góc MAE=góc DAE
AE chung
=>ΔAME=ΔADE
=>góc ADE=góc AME=góc AMN
D đối xứng N qua AC
=>AN=AD
=>AC là phân giác của góc NAD
Xét ΔDAF và ΔNAF có
AD=AN
góc DAF=góc NAF
AF chung
=>ΔDAF=ΔNAF
=>góc ADF=góc ANF
AD=AM
AD=AN
=>AM=AN
=>góc AMN=góc ANM
=>góc ADE=góc ADF
=>DA là phân giác của góc EDF
a) AD=AH=AE (do đối xứng) => A nằm trên trung trực của DE.
b) HD cắt AB tại K. HE cắt AC tại I. Do đối xứng nên HD ┴ AB và HI ┴ AC.
=>Tứ giác AKHI nội tiếp =>^IKH=^IAH.
KI là đường trung bình trong ∆DHE => KI//DE. =>^NDH=^IKH (đồng vị).
=>^NDH=^NAH =>tứ giác ADHN nội tiếp.
c) Tứ giác ADBH nội tiếp đường tròn đường kính AB (2 góc đối tại B và H vuông) và tứ giác ADHN nội tiếp (cm câu b) =>5 điểm A,D,B,H,N nằm trên đường tròn đường kính AB. =>^BNA vuông. hay BN là đường cao trong ∆ABC. tương tự CM là đường cao =>AH,BN,CN đồng quy tại trực tâm.
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Tứ giác ADBM là hình thoi ⇒ AM // DB và AM = AD
Hay AM // BC và AM = AD (1)
Tứ giác ADCN là hình thoi ⇒ AN // DC và AD = AN
Hay AN // BC và AN = AD (2)
Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng
Và AM = AN nên A là trung điểm của MN
Vậy điểm M và điểm N đối xứng qua điểm A.