Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
b: E đối xứng A qua BC
nên BC vuông góc AE tại H và H là trung điểm của AE
Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED vuông góc với EA
c: A đối xứng E qua CB
nên CA=CE=BD
Xét tứ giác BCDE có
BC//DE
BD=CE
=>BCDE là hình thang cân
a) Xét tứ giác $ABDC$ có :
$AM = MD ; BM = MC$
$\to$ Tứ giác $ABDC$ là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
b E đối xứng A qua BC
=>BC vuông góc AE tại H và H là trung điểm của AE
Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED vuông góc với AE
c: A đối xứng E qua BC
nên CA=CE=BD
Xét tứ giác BEDC có
BC//DE
BD=EC
=>BEDC là hình thang cân
AE=12cm =>AH=6cm
MC=2,5cm
=>BC=5cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot5=3\cdot5=15\left(cm^2\right)\)
Giải thích các bước giải:
ta có: Tam giác ABC vuông tại A (gt)
=> AB^2+AC^2=BC^2
6^2+8^2 =BC^2
36+64 =BC^2
100 =BC^2
=>BC=10cm
Tam giác ABC vuông tại A có Am là đg trung tuyến
=> AM=BC/2=10/2=5cm
HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ.
Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.
b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.
=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.
Do đó ADMC là hình thang vuông.
c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)
=> D là trung điểm của AB.
Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)
Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)
Từ (1) và (2) => AEBM là hình thoi.
d) Vì AEBM là hình thoi => AE // BM, AE = BM.
Mà BM = MC => AE // MC, AE = MC. Do đó AEMC là hình bình hành.
e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.
Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I.
Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC.
Mà AE // MC, AE = MC (cmt)
=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)
Vậy F đối xứng E qua A.
Bạn tự vẽ hình nhé.
a) Xét tứ giác \(ABDC\)có: \(MB=MC\)
\(MA=MD\)
Suy ra tứ giác \(ABDC\)là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)
b) Có thể đề ở đây là \(E\)đối xứng với \(A\)qua \(BC\).
Xét tam giác \(AED\)có: \(HA=HE\)(do tính chất đối xứng)
\(MA=MD\)(gt)
Suy ra \(MH\)là đường trung bình của tam giác \(AED\).
\(\Rightarrow MH//ED\).
mà \(AE\perp MD\)(vì \(E\)đối xứng với \(A\)qua \(BC\))
\(\Rightarrow AE\perp ED\).
c) Xét tam giác \(BAE\)có \(E\)đối xứng với \(A\)qua \(BC\)nên \(\Delta BAE\)cân tại \(B\).
\(\Rightarrow\widehat{ABH}=\widehat{EBH}\)(1).
Do \(ABDC\)là hình bình hành nên \(\widehat{BCD}=\widehat{ABC}\)(2)
Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{BCD}\).
Xét tứ giác \(BCDE\)có:
\(BC//ED\)(theo b))
\(\widehat{EBH}=\widehat{BCD}\)(cmt)
suy ra \(BCDE\)là hình thang cân.