Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
b: E đối xứng A qua BC
nên BC vuông góc AE tại H và H là trung điểm của AE
Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED vuông góc với EA
c: A đối xứng E qua CB
nên CA=CE=BD
Xét tứ giác BCDE có
BC//DE
BD=CE
=>BCDE là hình thang cân
a) Tứ giác ABDC có:
M là trung điểm của BC (gt)
M là trung điểm của AD (gt)
⇒ ABDC là hình bình hành
Mà ∠BAC = 90⁰ (∆ABC vuông tại A)
⇒ ABDC là hình chữ nhật
b) Do ABDC là hình chữ nhật (cmt)
⇒ CD = AB (1)
Do B là trung điểm của AE (gt)
⇒ BE = AB = AE : 2 (2)
Từ (1) và (2) ⇒ CD = BE
Do ABDC là hình chữ nhật (cmt)
⇒ CD // AB
⇒ CD // BE
Tứ giác BEDC có:
CD // BE (cmt)
CD = BE (cmt)
⇒ BEDC là hình bình hành
c) Do ABDC là hình chữ nhật (cmt)
⇒ AC // BD
Do đó AC, BD, EK đồng quy là vô lý
Em xem lại đề nhé!
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Xét tứ giác $ABDC$ có :
$AM = MD ; BM = MC$
$\to$ Tứ giác $ABDC$ là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
b E đối xứng A qua BC
=>BC vuông góc AE tại H và H là trung điểm của AE
Xét ΔAED có AH/AE=AM/AD
nên HM//ED
=>ED vuông góc với AE
c: A đối xứng E qua BC
nên CA=CE=BD
Xét tứ giác BEDC có
BC//DE
BD=EC
=>BEDC là hình thang cân
AE=12cm =>AH=6cm
MC=2,5cm
=>BC=5cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot5=3\cdot5=15\left(cm^2\right)\)