Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Chứng minh được .
Suy ra điểm cùng thuộc đường tròn đường kính nên tứ giác nội tiếp.
Có tứ giác nội tiếp nên ( góc nội tiếp cùng chắn cung ) hay .
Trong đường tròn tâm , ta có là góc nội tiếp chắn cung và nội tiếp chắn cung
.
2.
có nên hay .
Ta chứng minh được vừa là đường cao, vừa là phân giác của tam giác nên là trung điểm của .
Chứng minh tương tự là trung điểm của là đường trung bình của tam giác (1).
Do nên là điểm chính giữa cung (2).
Từ (1) và (2) suy ra .
3.
Kẻ đường kính của đường tròn tâm , chứng minh tứ giác nội tiếp đường tròn đường kính .
Chứng minh tứ giác là hình bình hành, suy ra .
Trong đường tròn có (2 góc nội tiếp cùng chắn cung ). Chỉ ra tam giác vuông tại và áp dụng hệ thức giữa cạnh và góc ta được cm.
Đường tròn ngoại tiếp tứ giác cũng là đường tròn ngoại tiếp tam giác .
Gọi là bán kính đường tròn ngoại tiếp tam giác .
Suy ra cm.
Vậy cm.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.
c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)
Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)
\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)
d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy)
Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)
Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)
\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)
Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)
Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)
Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\)
\(\Rightarrow\) OA đi qua trung điểm của PQ (4)
Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C
\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C
Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)
Ta có: BEDC là tứ giác nội tiếp
=>\(\widehat{DEC}=\widehat{DBC}\)
=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DE//D'E'
Kẻ tiếp tuyến Ax của (O')
=>Ax\(\perp\)OA tại A
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{xAB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)
nên \(\widehat{xAB}=\widehat{AED}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//ED
Ta có: Ax//ED
OA\(\perp\)Ax
Do đó: OA\(\perp\)ED
c: Xét (O) có
ΔABA' nội tiếp
A'A là đường kính
Do đó: ΔABA' vuông tại B
=>AB\(\perp\)BA'
Xét (O) có
ΔACA' nội tiếp
A'A là đường kính
Do đó: ΔACA' vuông tại C
=>AC\(\perp\)CA'
Ta có: AC\(\perp\)CA'
BH\(\perp\)AC
Do đó: BH//A'C
Ta có: AB\(\perp\)BA'
CH\(\perp\)AB
Do đó: CH//BA'
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
=>BC cắt HA' tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HA'
=>H,I,A' thẳng hàng
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiêp
b: góc ABM=góc ACN
=>sđ cung AM=sđ cung AN=2*30=60 độ
=>AM=AN
c: OM=ON
AM=AN
=>OA là trung trực của MN
=>OA vuông góc MN
d: Kẻ đường kính AD
Xét ΔACD vuông tại C và ΔAKB vuông tại K có
góc ADC=góc ABK
=>ΔACD đồng dạng với ΔAKB
=>AC/AK=AD/AB
=>AK*2*R=AB*AC
a: góc BEC=1/2*180=90 độ
góc BDC=1/2*180=90 độ
góc AEH+góc ADH=180độ
=>AEHD nội tiếp
b: Xet ΔABC có BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
Xét ΔSBE và ΔSDC co
góc SBE=góc SDC
góc S chung
=>ΔSBE đồng dạngvơi ΔSDC
=>SB/SD=SE/SC
=>SB*SC=SD*SE
c: góc AFC=góc AEC=90 độ
=>AEFC nội tiếp
=>góc FEC=góc FAC
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: Xét ΔHQB và ΔHPC có
góc HQB=góc HPC
góc QHB=góc PHC
=>ΔHQB đồng dạng với ΔHPC
=>HQ/HP=HB/HC
=>HQ*HC=HP*HB
c: kẻ tiếp tuyến Ax
=>góc xAC=góc ABC=góc ADE
=>Ax//ED
=>OA vuông góc DE
1/ E và D cùng nhìn BC dưới 2 góc bằng nhau và bằng 90 độ nên E và D cùng nằm trên đường tròn đường kính BD
=> BCDE là tứ giác nội tiếp
Xét tg vuông ABD và tg vuông ACE có
\(\widehat{ABP}=\widehat{ACQ}\) (cùng phụ với \(\widehat{BAC}\) ) (1)
\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nội tiếp) (2)
\(sđ\widehat{ACQ}=\dfrac{1}{2}sđ\) cung AQ (góc nội tiếp) (3)
Từ (1) (2) (3) => sđ cung AP = sđ cung AQ
2/
Ta có
\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nt) (1)
\(sđ\widehat{ABQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt) (2)
Mà sđ cung AP = sđ cung AQ (cmt) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{ABP}=\widehat{ABQ}\) => BA là phân giác của \(\widehat{PBQ}\)
Mà \(AB\perp CQ\) => BA là đường cao của tg HBQ
=> tg HBQ cân tại B (trong tg đường phân giác đồng thời là đường cao thì tg đó là tg cân)
=> EQ=EH (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến) => E là trung điểm của HQ (đpcm)
Chứng minh tương tự ta cũng có D là trung điểm của HP
=> ED là đường trung bình của tg HPQ => ED//PQ
Nối AO cắt (O) tại K ta có
sđ cung AQK = sđ cung APK (nửa đường tròn)
sđ cung AQ = sđ cung AP (cmt)
=> sđ cung QBK = sđ cung PCK => KQ=KP (hai cung có số đo bằng nhau thì hai dây trương cung tương ứng có độ dài bằng nhau) => tg KPQ cân tại K
Ta có
\(sđ\widehat{AKQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt)
\(sđ\widehat{AKP}=\dfrac{1}{2}sđ\) cung AP (góc nt)
Mà sđ cung AQ = sđ cung AP (cmt)
=> \(\widehat{AKQ}=\widehat{AKP}\) => AK là phân giác \(\widehat{PKQ}\) của tg cân KPQ
=> AK là đường cao của tg KPQ (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
\(\Rightarrow AK\perp PQ\Rightarrow OA\perp PQ\) mà DE//PQ (cmt) \(\Rightarrow OA\perp DE\) (đpcm)
3/ Ta có
Xét tg vuông ABD có
\(\widehat{ABD}=90^o-\widehat{CAB}=90^o-60^o=30^o\)
\(\Rightarrow AD=\dfrac{AB}{2}\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)
C/m tương tự khi xét tg vuông ACE ta cũng có \(AE=\dfrac{AC}{2}\)
Ta có
\(sđ\widehat{ADB}=30^o=\dfrac{1}{2}sđ\) cung AP => sđ cung AP\(=60^o\) = sđ cung AQ
Gọi I là giao của AK với PQ ta có
tg KPQ cân tại K (cmt)
\(AK\perp PQ\) (cmt)
=> IQ=IP (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
Xét tg vuông AQI có
\(sđ\widehat{AQI}=\dfrac{1}{2}sđ\) cung AP = \(30^o\Rightarrow AI=\dfrac{AQ}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
Ta có \(\widehat{AQK}=90^o\) (góc nt chắn nửa đường tròn)
Xét tg vuông AQK có
\(AQ^2=AI.AK=\dfrac{AQ}{2}.2R\Rightarrow AQ=R\Rightarrow AI=\dfrac{AQ}{2}=\dfrac{R}{2}\)
\(\Rightarrow IK=AK-AI=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)
Ta có
\(IQ^2=IA.IK\) (trong tg vuông bình phươn đường cạo hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow IQ^2=\dfrac{R}{2}.\dfrac{3R}{2}\Rightarrow IQ=\dfrac{R\sqrt{3}}{2}\)
Ta có
IQ=IP (cmt) => PQ=2.IQ=\(R\sqrt{3}\)
Ta có ED là đường trung bình của tg HPQ (cmt)
\(\Rightarrow DE=\dfrac{PQ}{2}=\dfrac{R\sqrt{3}}{2}\)
Ta có
\(S_{ABC}=\dfrac{1}{2}.AB.AC.\sin\widehat{CAB}=\dfrac{1}{2}.AB.AC.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{4}\)
\(S_{AED}=\dfrac{1}{2}.AD.AE.\sin\widehat{CAB}=\dfrac{1}{2}.\dfrac{AB}{2}.\dfrac{AC}{2}.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{16}\)
\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{1}{4}\)
Gọi R' là bán kính đường tròn ngoại tiếp tg AED
\(S_{AED}=\dfrac{AE.AD.DE}{4R'}=\dfrac{AC}{2}.\dfrac{AB}{2}.\dfrac{6\sqrt{3}}{2}.\dfrac{1}{4R'}=\dfrac{AB.AC.\sqrt{3}}{4}.\dfrac{3\sqrt{3}}{4R'}=\dfrac{S_{ABC}.3\sqrt{3}}{4R'}\)
\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{3\sqrt{3}}{4R'}=\dfrac{1}{4}\Rightarrow R'=3\sqrt{3}\)