Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
Lời giải:
a) Vì $SB, SC$ là tiếp tuyến $(O)$ nên $SB\perp OB, SC\perp OC$
$\Rightarrow \widehat{OBS}=\widehat{OCS}=90^0$
Tứ giác $SBOC$ có tổng 2 góc đối nhau $\widehat{OBS}+\widehat{OCS}=90^0+90^0=180^0$ nên $SBOC$ là tứ giác nội tiếp.
b)
$\widehat{BEC}=\widehat{BFC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp
$\Rightarrow \widehat{IFB}=\widehat{AFE}=\widehat{ACB}(1)$
Mà:
$\widehat{IBF}=\widehat{IBA}=\widehat{ACB}(2)$ (góc nt tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
Từ $(1);(2)\Rightarrow \widehat{IFB}=\widehat{IBF}$
$\Rightarrow \triangle IFB$ cân tại $I$
$\Rightarrow IF=IB$
c)
$\widehat{FAK}=\widehat{BAO}=\frac{180^0-\widehat{AOB}}{2}=90^0-\widehat{ACB}=\widehat{CAD}(3)$
$\widehat{AFK}=\widehat{AFE}=\widehat{ACB}=\widehat{ACD}(4)$
Từ $(3);(4)\Rightarrow \triangle AFK\sim \triangle ACD$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FK}{CD}(*)$
Mặt khác:
Dễ thấy $\triangle AFE\sim \triangle ACB$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FE}{CB}(**)$
Từ $(*);(**)\Rightarrow \frac{FK}{CD}=\frac{EF}{BC}$
$\Rightarrow FK.BC=EF.CD$ (đpcm)
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)