K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2014

Ta có : góc ACD = \(90^o\) ( góc nội tiếp chắn nửa đường tròn ) \(\Rightarrow AC\) vuông góc \(CD\).

Ta lại có : \(BH\)vuông góc \(AC\) ( \(H\) là trực tâm của tam giác ABC )

Vì : \(AC\) vuông góc \(CD\) ( chứng minh trên )

nên : \(BH\) song song \(CD\)

21 tháng 8 2019

A B C O H E D S F T I G

a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm  ta thấy H,S đối xứng nhau qua AC.

Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)

Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)

Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).

b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T

Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF

Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).

c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:

Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH

Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)

Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC

Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)

Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)

=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng

Vậy thì BE,CF,IH cắt nhau tại G (đpcm).

18 tháng 5 2021

Bạn ơi, chứng minh cho mình câu b: AH=AS=AT với được không ạ

 

3 tháng 9 2016

A B C D H E O

a/ Ta góc góc ACD chắn nửa cung AD là đường kính của (O)

=> góc ACD = 90 độ => CD vuông góc AC

Mà BH vuông góc với AC => BH // CD

b/ Tương tự ta cũng chứng minh được CH // BD

Từ câu a) có BH // CD => BHCD là hình bình hành

c/ Áp dụng công thức tính diện tích tam giác : \(S_{ABC}=\frac{1}{2}.AC^2.\frac{sinA.sinC}{sinB}=\frac{1}{2}.5^2.\frac{sin60^o.sin45^o}{sin75^o}=\frac{75-25\sqrt{3}}{4}\) (cm2)

 

5 tháng 9 2016

C.ơn ạ 

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

23 tháng 11 2023

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,H,E cùng nằm trên đường tròn đường kính AH

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>KC\(\perp\)AC

mà HD\(\perp\)AC

nên KC//HD