Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B H D M O K
a/ Ta có
\(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CK\perp AC\)
\(BH\perp AC\) (BH là đường cao)
=> BH//CK (vì cùng vuông góc với AC) (1)
Ta có
\(\widehat{ABK}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow BK\perp AB\)
\(CH\perp AB\) (CH là đường cao)
=> CH//BK (cùng vuông góc với AB (2)
Từ (1) và (2) => BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
b/ Nối BO cắt đường tròn tại D ta có
\(\widehat{BCD}=90^o\) (góc nội tiếp chắn nửa đường tròn)\(\Rightarrow CD\perp BC\)
\(AH\perp BC\) (AH là đường cao)
=> AH//CD (cùng vuông góc với BC) (3)
Ta có
\(\widehat{BAD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp AB\)
\(CH\perp AB\) (CH là đường cao)
=> AD//CH (cùng vuông góc với AB) (4)
Từ (3) và (4) => AHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
=> AH=CD (trong hbh các cặp cạnh đối bằng nhau từng đôi một)
Xét \(\Delta BCD\) có
\(BM=CM;BO=DO\) => OM là đường trung bình của \(\Delta BCD\Rightarrow OM=\frac{1}{2}CD\)
Mà \(CD=AH\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK vuông góc với AB
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>AC vuông góc với CK
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Vì BHCK là hình bình hành
nên BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có
KO/KA=KM/KH
nên OM//AH và OM/AH=KO/KA=1/2
=>OM=1/2AH
a) ta có: \(OD=OE=OA=\frac{1}{2}AE\)( bán kính đường tròn)
mà \(D\in\left(O;R\right)\)( giả thiết \(AH\)cắt \(\left(O;R\right)\)tại \(D\))
xét \(\Delta ADE\) có \(OD\) \(=\frac{1}{2}AE\)
\(\Rightarrow OD\) là đường trung tuyến ứng với cạnh \(AE\)
\(\Rightarrow\Delta ADE\) là \(\Delta\)vuông tại \(D\)
\(\Rightarrow AE\) là cạnh huyền trong tam giác vuông
ta cũng có \(O\)nằm giữa \(A,E\)( tâm đường tròn )
\(\Rightarrow A,O,E\) thẳng hàng
AH vuông góc BC và KB vuông góc CB nên AH//BK
Lại có BH vuông góc AC và KA vuông góc CA nên HB//AK
Xét tứ giác AHBK có: AH//BK và HB//AK nên AHBK là hình bình hành
Suy ra AH=BK
Xét (O;R) có:
CK là đường kính của (O;R)
Điểm C; B; K thuộc (O;R)
Suy ra: tam giác CBK vuông tại B
Áp dụng dịnh lý py-ta-go cho tam giác CBK vuông tại B
Có: BK^2+CB^2=CK^2
Mà AH=BK(cmt)
Suy ra: AH^2+ BC^2=CK^2 (1)
Có CK là đường kính
Suy ra CK=2R tương đương CK^2=4R^2 (2)
Adđl py-ta-go cho các tam giac AA'B; CHA'; BAB'; BB'C
Có: AB^2=AA'^2+BA'^2
CH^2=CA'^2+HA'^2
AH^2=AB'^2+HB'^2
BC^2=BB'^2+B'C^2
Suy ra: AB^2+CH^2=( AA'^2+CA'^2 ) + ( BA'^2+HA'^2 )= AC^2+BH^2 (3)
=) AH^2+BC^2= BB'^2+AB'^2+HB'^2+B'C^2=AB^2+CH^2 (4)
Từ (1) ; (2) ;(3) và (4) =) AH^2+BC^2= BH^2+AC^2=CH^2+AB^2=4R^2 (đpcm)
a) vì CD LÀ ĐƯỜNG KÍNH => GÓC DAC=90 (CHẮN NỬA ĐT) <=> DA VUÔNG GÓC AC. MÀ BH VUÔNG GÓC AC <=> DA//BH
TƯƠNG TỰ CHỨNG MINH AH //DB => ABDH LÀ HBH
B) gọi khoảng cách TỪ O ĐẾN BC LÀ OI VỚI OI VUÔNG GÓC BC.
TỪ QUAN HỆ ĐƯỜNG KÍNH VÀ DÂY => I LÀ TRUNG ĐIỂM BC
O LÀ TRUNG ĐIỂM CD => OI LÀ ĐTB CẢU TAM GIÁC CDB => OI=\(\frac{CD}{2}\)
MÀ CD=AH(HÌNH BÌNH HÀNH) => ĐIỀU PHẢI CM
TRỜI KHÓ DỮ