Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.
a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.
b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.
Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.
Vậy ta có đpcm.
c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.
Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.
Khi đó FH . FN = FE . FD = FB . FC.
Suy ra tứ giác BHNC nội tiếp.
Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).
Do đó tứ giác DNMC nội tiếp.
Tương tự tứ giác ENMB nội tiếp.
Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.
Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).
(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{EAC}\) chung
Do đó: ΔAEC đồng dạng với ΔADB
=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AD\cdot AC\)
Xét ΔABC có
CE,BD là đường cao
CE cắt BD tại H
DO đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
=>\(\widehat{EDH}=\widehat{EAH}\)
=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)
Xét tứ giác HDCM có
\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)
=>HDCM là tứ giác nội tiếp
=>\(\widehat{HDM}=\widehat{HCM}\)
=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)
=>DB là phân giác của \(\widehat{EDM}\)
Tham khảo:
d: Xét ΔAHF có FO/FA=FM/FH=1/2
nên OM//AH và OM/AH=FO/FA=1/2
Gọi giao cuảt AG với OH là G'
OM//AH
=>AG'/G'M=HG'/G'O=AH/OM=2
G là trọng tâm của ΔABC
=>AG/GM=2
=>AG'/G'M=AG/GM
=>G' trùng với G
=>HG=2GO
=>S AHG=2*S AGO
a: góc BEC=góc BDC=1/2*180=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc EFH=góc ABD
góc DFH=góc ACE
mà góc ABD=góc ACE
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tam giác BEC
Ta có :
tam giác BEC nt (O)
BC đường kính
=> tam giác BEC vuông tại E
Xét tam giác BDC
Ta có :
tam giác BDC nt (o)
BC đường kính
=> tam giác BDC vuông tại D
Ta có:
góc BEC vuông tại E
góc BDC vuông tại D
Mà EC cắt DB tại H
=> H là trực tâm
=> AH vuông góc Với BC tại F
c) Xét tg BEHF
Ta có
góc BEH= 90 độ
góc BFH = 90 độ
=> góc BEC + góc BDC = 90 độ + 90 độ = 180 độ
=> tg BEHF nt(tổng 2 góc đối bằng 180 độ )
Ta có: B, E, D, F thuộc (O)
=> tg BEDF nt (O)
=> góc EBD = góc EFD ( 1 )
ta có: tg BEHF nt
=> góc EBH = góc EFH ( 2 )
từ (1) và (2)
=> góc EFD = góc EFH
=> AF // AF