Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
a)ta có : A=E=F=90 => AEHF hình chữ nhật
b)ta có: Am=AN, HM=MC =>ACNH hbh
Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân
c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3
=>AN=3AG
a) Xét tứ giác AKCH có :
AD = DC ( D là trung điểm AC )
HD = DK ( K là điểm đối xứng của H qua D )
=> AKCH là hình bình hành (1)
Xét ∆ vuông AHC có :
HD là trung truyến
=> HD = AD = DC
Mà HD + DK = HK
AD + DC = AC
=> HK = AC (2)
Từ (1) và (2) => AKCH là hình chữ nhật
b) Xét ∆ABC có :
E là trung điểm AB
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED //BC
Xét ∆ABC có :
E là trung điểm AC
I là trung điểm BC
=> EI là đường trung bình ∆ABC
=> EI//AC , EI = \(\frac{1}{2}AC\)
Xét tứ giác EDCI có :
ED// IC ( I \(\in\)BC )
EI//DC ( D \(\in\)AC)
=> EDCI là hình bình hành
c) Vì ED //HI ( H , I \(\in\)BC )
=> EDIH là hình thang
Vì EI = \(\frac{1}{2}AC\)(cmt)
Mà HD = AD = DC (cmt)
=> HD = \(\frac{1}{2}AC\)
=> EI = HD
Mà EDIH là hình thang
=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔHIP có
D,M lần lượt là trung điểm của HI,HP
=>DM là đường trung bình của ΔHIP
=>DM//IP
=>BC//IP
Xét tứ giác BHCP có
M là trung điểm chung của BC và HP
=>BHCP là hình bình hành
=>BP=CH
Xét ΔCIH có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCIH cân tại C
=>CI=CH
mà CH=BP
nên CI=BP
Xét tứ giác BCPI có BC//PI và BP=IC
nên BCPI là hình thang cân
b: Ta có: BHCP là hình bình hành
=>BH//CP và BP//CH
Ta có: BH//CP
BH\(\perp\)CA
Do đó: CP\(\perp\)CA
=>ΔCPA vuông tại C
\(\widehat{OCP}+\widehat{OCA}=\widehat{ACP}=90^0\)
\(\widehat{OPC}+\widehat{OAC}=90^0\)(ΔACP vuông tại C)
mà \(\widehat{OCP}=\widehat{OPC}\)
nên \(\widehat{OCA}=\widehat{OAC}\)
=>OC=OA
=>OA=OP
=>O là trung điểm của AP
Xét ΔPAH có
O,M lần lượt là trung điểm của PA,PH
=>OM là đường trung bình của ΔPAH
=>OM//AH và OM=1/2AH
Xét ΔQOM và ΔQHA có
\(\widehat{QOM}=\widehat{QHA}\)(OM//HA)
\(\widehat{OQM}=\widehat{HQA}\)(hai góc đối đỉnh)
Do đó: ΔQOM~ΔQHA
=>\(\dfrac{QM}{QA}=\dfrac{OM}{HA}=\dfrac{1}{2}\)
=>\(AQ=\dfrac{2}{3}AM\)
Xét ΔABC có
AM là đường trung tuyến
\(AQ=\dfrac{2}{3}AM\)
Do đó: Q là trọng tâm của ΔABC
Xét ΔABC có
Q là trọng tâm
N là trung điểm của AC
Do đó: B,Q,N thẳng hàng
giúp mik vs ạ