Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AD, BE và CF.
\(\Delta AEF~\Delta ABC\left(c.g.c\right)\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\cos^2A\)
\(\Delta BFD~\Delta BCA\left(c.g.c\right)\Rightarrow\dfrac{S_{BFD}}{S_{BCA}}=\left(\dfrac{BF}{BC}\right)^2=\cos^2B\)
\(\Delta CDE~\Delta CAB\left(c.g.c\right)\Rightarrow\dfrac{S_{CDE}}{S_{CAB}}=\left(\dfrac{CE}{CB}\right)^2=\cos^2C\)
\(\sin^2A+\sin^2B+\sin^2C=3-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
\(=3-\left(\dfrac{S_{AEF}}{S_{ABC}}+\dfrac{S_{BFD}}{S_{BCA}}+\dfrac{S_{CDE}}{S_{CAB}}\right)>3-\dfrac{S_{ABC}}{S_{ABC}}=2\left(\text{đ}pcm\right)\)
Ta có:
\(A + B + C = π \Rightarrow C = π - (A + B) \Rightarrow cosC = cos[π - (A + B)] = - cos(A + B)
\)
\(P = Sin^2A+Sin^2B+Sin^2C = \dfrac{1 - cos2A}2 + \dfrac{1 - cos2B}2 + 1 - cos^2C\)
\(= 2 - \dfrac{cos2A + cosB}2 - cos^2(A+B)\)
\(= 2 - cos(A+B).cos(A-B) - cos^2(A+B)\)
\(= 2 - cos(A+B)[cos(A-B) + cos(A+B)]\)
\(= 2 - cos(A+B).2cosA.cosB\)
\(= 2 + 2.cosC.cosA.cosB
\)
\(A ,B , C\) là các góc nhọn \(\Rightarrow\) \(cosC.cosA.cosB > 0\)
\(\Rightarrow\) \(P = Sin^2A+Sin^2B+Sin^2C > 2\)
Trước tiên ta chứng minh bài toán phụ: công thức tính diện tích tam giác ABC có góc A nhọn \(S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\)
Giải: Kẻ đường cao BH thì \(BH=AB.\sin A\)do đó \(S_{\Delta ABC}=\frac{1}{2}AC.BH=\frac{1}{2}AC.AB.\sin A\)
Ta quay trở lại việc giải bài toán trên. (hình bạn tự vẽ nhé!)
Ta có \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BDF}-S_{CDE}\)suy ra \(\frac{S_{DEF}}{S_{ABC}}=1-\frac{S_{AEF}}{S_{ABC}}-\frac{S_{BDF}}{S_{ABC}}-\frac{S_{CDE}}{S_{ABC}}.\)
Áp dụng bài toán phụ ta có \(\frac{S_{AEF}}{S_{ABC}}=\frac{\frac{1}{2}AE.AF.\sin A}{\frac{1}{2}AB.AC.\sin A}=\frac{AE.AF}{AB.AC}=\frac{AF}{AC}.\frac{AE}{AB}\)
Trong các tam giác vuông ACF và ABE có: \(\cos A=\frac{AF}{AC}\)và \(\cos A=\frac{AE}{AB}\)
Do đó \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)tương tự \(\frac{S_{BDF}}{S_{ABC}}=\cos^2B\)và \(\frac{S_{CDE}}{S_{ABC}}=\cos^2C\)
Vậy \(\frac{S_{DEF}}{S_{ABC}}=\left(1-\cos^2A\right)-\cos^2B-\cos^2C=\sin^2A-\cos^2B-\cos^2C.\)
Hay \(S_{DEF}=\left(\sin^2A-\cos^2B-\cos^2C\right).S_{ABC}=\sin^2A-\cos^2B-\cos^2C\)(do \(S_{ABC}=1\)).
a)
\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)
\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)
\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)
\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)
Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)
Cộng theo vế của (1) , (2) và (3) => đpcm
b)
\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)
\(=1-\cos^2A-\cos^2B-\cos^2C\)
\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)
a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)
d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2
AM*AC=AH^2
Do đó: AN*AB=AM*AC
e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=BC\cdot\dfrac{AH}{BC}=AH\)