Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a: Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD
hay D nằm trên đường trung trực của AH(1)
ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên HE=AE
hay E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
hay A và H đối xứng nhau qua ED
a: Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AC
Do đó:MD là đường trung bình của ΔABC
Suy ra: MD//AE và MD=AE
hay ADME là hình bình hành
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)