Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Matha: AC//MI
=>\(\widehat{OAM}=\widehat{IMN}\)
\(\widehat{ONA}=\widehat{INM}\)
mà \(\widehat{IMN}=\widehat{INM}\)
nên \(\widehat{OAN}=\widehat{ONA}\)
=>OA=ON
=>AC=BN
Xét tứ giác ANCB có
O là trung điểm chung của AC và NB
AC=BN
Do đó: ANCB là hình chữ nhật
Đây nhé bạn!!!!
a) Xét tam giác ANE và tg BNC có
góc ẢNE= góc BNC( đối đỉnh )
BN=NE ( gt)
AN=NC( N td AC)
suy ra tg ANE= góc BNC ( c.g.c)
suy ra góc AEN = góc NBC( hai góc tuơng ứng)
suy ra AE//BC( hai góc slt) (1)
Xét tg DAM và tg CBM có
góc DAM= góc CMB
AM=BM (M td AB)
DM=MC( GT)
Suy ra tg DAM= tg CMB( C.g.c)
suy ra góc ADM= góc MCB( hai góc t/ư)
Suy ra DA//BC( hai góc so le trong) (2)
Từ (1) và (2) suy ra D,A,E thẳng hàng( tiên đề Ơ-clít)
b)Xét tam giác ABC có AM=BM(gt)
AN=NC(gt)
suy ra MN là đuơng trung bình tam giác ABC SUy ra MN//BC
MN=1/2 BC
MÀ DE // BC(cmt) suy ra MNED là hình thang
Ta lại có AE=BC(tg ANE=tg BNC)
AD= BC(TG ADM=tg MCB)
suy ra AE+AD=2bc
suy ra DE=2BC
mà MN=1/2 BC
SUY ra MN=1/4DE
Vì ∆MNP cân tại M
=> MN = MP , MNP = MPN
=> MNP = \(\frac{180°-NMP}{2}\)
Vì MQ = MK
=> ∆MQK cân tại M
=> MQ = MK , MKQ = MQK
=> QKM = \(\frac{180°-QMK}{2}\)
Mà QMK = NMP ( đối đỉnh)
=> QKM = MNP
Mà 2 góc này ở vị trí so le trong
=> QK//NP
=> QKPN là hình thang (1)
Ta có :
QM + MP = QP
KM + MN = KN
Mà QM = MK , MN = MP
=> OP = KN (2)
=> QKPN là hình thang cân
Xét tứ giác `MNPK` có :
\(\left\{{}\begin{matrix}IM=IK\\IN=IP\end{matrix}\right.\)
`=>` tứ giác `MNPK` là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
`=> MN = PK ; MN` // `PK`
Xét tứ giác MNKP có
I là trung điểm của MK và NP
=>MNKP là hình bình hành
=>MN//PK và MN=PK